Field Theory Description of Continuous Phase Transitions'

Daniel J. Amit ${ }^{2}$ and Marco Zannettis ${ }^{3}$

Recoived March 8, 1972

Abstract

We present a formalism of a scalar, classical, and time-independent field theory of the type proposed by furell for the treatment of continuous phase transitions. The formalism is developed along lines similar to those of many-body theory. All physical quantities, eg., susceptibility, correlation length, and free energy, are expressed as functionals of the two-point timeindependent correlation function and the order parameter. This is done both in the ordered and in the disordered phase. We obtain renormalized equations and diagram expansions of all quantities and self-consistent approximation schemes are presented. It is shown that near the transition temperature, which is defined within the theory, no weak coupling limit exists. The generalization to more complicated field symmetries is straightforward.

KEY WORDS: Phase transition; field theory; order parameter; renormalization; approximation schemes.

1. INTRODUCTION

In recent attempts to break beyond classical theories for general continuous phase transitions it was suggested that the most important ingredients are the long-wavelength spatial variation of the order parameter. One approach was to postulate a statistical mechanics in terms of a spatially varying field.

Work supported in part by N.S.F. Grant No. (iP-17560).
${ }^{2}$ This work is in partial fulfilment of Ph.D. requirements at Brandeis University.
: Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel.
${ }^{3}$ Department of Physics, Brandeis University, Waltham, Massachusetts.

The field is defined on a coarse-grained space so that: (a) the field becomes classical due to averaging over a cell and (b) effects stemming from variations on a scale smaller than the size of a cell are assumed unimportant. ${ }^{13}$:

In this approach the statistical mechanies is preseribed by postulating at weight for each distribution of the fied. More u pecifically, if $\eta(\mathbf{x})$ is a scalar field, then one writes the weight as

$$
\begin{equation*}
w\{\eta(\mathbf{x})\} \cdot \exp \mid \beta F\{\eta(\mathbf{x})\}] \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
F\{\eta(\mathbf{x})\}=-\int d^{*} x\left[A_{0}(\Gamma \eta)^{2}: A \eta^{2}: B \eta \eta^{4}\right] \tag{2}
\end{equation*}
$$

where s is the number of dimensions. The partition fintion is obtained by summing over all possible distributions $\eta(\mathbf{x})$ assuming all other variables to have been summed previously.

In the above A_{0}, A, and B are constants whose values are not determined within the theory. They are in principle calkulated from the microscopic theory in coarse-graining and in the climinalion of short-range phenomena. Explicit calculation of the coefficients is heyond the power of present techniques. However, the qualitative nature of the transition is assumed to be independent of their particular values. They can, of course, be determined from experiment.

On the other hand, direct assaulis on the various many-body Hamiltomans have been carried out ${ }^{(4}{ }^{\text {(i) }}$ The dependence of correlation functions on high momentum is eliminated and it is argued that only zero-frequency quantities are important. The parameters of the problem, renormalized by the above considerations, are again beyond the power of calculation and eventually the equations for the correlation functions and the dependence. near the transition, of various physical yuantitics on the correlation functoons are essentially the same as in the model of ty. (2).

Both Ferrell ${ }^{(1)}$ and Migdal and Polyahov ${ }^{(4,3)}$ claim that their respective results for the thermodynamics of the system obey scaling relations between the critical exponents. ${ }^{(6)}$ This clearly goes beyond the classical theory ${ }^{(7)}$ and gives a theory which treats its own fluctuations. This should apply all the way to the critical point.

The same problem was recently treated by Wilsonnan ${ }^{(80)}$ using the technique of the renormalization group to qualitatively calculate the critical exponents. The latter turn out to have nonclassical values.

In the present paper we develop the formalism of a theory based on Eq. (2). First we motivate the form of l.q. (2) and explain our notion of the order parameter. Then we consider the classical theory as an approximation to the present model and diccuss critically the relations obtained in
the classical theory between thermodynamic quantities and the correlation function.

I ollowing these preliminaries, we turn to a stady of the full implications of our postulated statistical mechanics. We do this along lines similar to Martin and Schwinger, ${ }^{(9)}$ Baym, ${ }^{(10)}$ and De Dominicis and Martin'11 and eventually arrive at: (a) the equation of "mothon" For the corretation function. (b) the expression for the correlation functan in terms of a "mass operator." (c) the self-consistent approximation schemes, and (d) the expression for the free energy in terms of the order parameter correlation function. The free energy is stationary with respect to variations of the order parameter and correlation function and thus it can be used for variational calculations of these quantities.

Ihe discussion of results is deferred whature communication. Generally speahing, we feel that the present approach is complementary to that of Wilson, and a unification of the two may prove very frutful.

2. NATURE OF THE ORDER PARAMETER

A general feature of continuous phase natsolsom is the anomatous behavior of certain thermodynamic and response functions: examples are the divergence of the susceptibility for a magnetio ystem and the divergence of the compressibility at the critical point of a liquid gas system. These are the most divergent quantities.

This indicates that at the transtion the system is in a regime dommated by large fluctuations with long-range correlations. In fiact. from tinear response theory the susceptibility x (i,,μ), , wh the average bulk order parameter $; \eta$, with respect to an externd disturbance μ is related to the order parameter correlation function $\eta(x) \eta\left(x^{1}\right) \quad g\left(x \quad x^{\prime}\right)$ where the angular brackets denote ensemble atorage by

$$
\begin{equation*}
X \quad \beta \int_{S} d^{4} r \operatorname{rr}(\mathbf{r}) ; \quad \beta^{1} \quad k_{B} T, \quad r \quad \mathbf{x} \quad \mathbf{x} \tag{3}
\end{equation*}
$$

Thus, as the tansition is approached the range of the correlation fumemon must increase in order for the integral bo he divergent at inlinits. Therefore. configurations of the system which are spatially nonuniform mat be expected to contribute significantly to the free encrgy.

The free energy for nonuniform sytems cin be represented by the integral over the volume of the system of a frece energy dematy ${ }^{12 i}$:

$$
r=i d x F(x)
$$

In order to construct $F(\mathbf{x})$. we divide the volume Ω of the system into cells whose volume is small compared 10Ω but large enough that a local
order parameter can be defined as a classical lield by averaging over the volume of the cell some corresponding nicroscopic observable. ${ }^{133.11}$

Ho elucidate this point, we recall that the concept of order parameter plays a central role in the phemomenological theory of continuous transtions." 1 : It is a quantity that vanishes "above" and is nonzero "below" the transition: in other words, the numerial value of the order parameter is an indication of the degree of ordering of the system.

At the more fundamental level of the quantum many-body description of the system the appearance of a nonzero value of the order parameter in the absence of an external field is a manilestation of spontaneous symmetry breaking. ${ }^{16.58)}$

If is a gencral feature of natny-body physes that, along with microscopic obecrvables subjected to the laws of quantum mechanics, there exist properties of the wstem macroscopic in the sense that their changes obey classical laws ${ }^{4}$: \quad To say this differently, to cach watue of an observable to be regarded a.) macroscopic there cormespond a sel of vates distinguished only by the values of microscopie observables: the manitold of these states form a Hilbert space and there is no interference between states belonging to Hilhert spaces asociated with different values of the macroobservable. "1a) A macroobservable is said to be invariant or nonimariant with respect to a group of tratisformations according to whether the associated Hilbett spaces are inariant or not under the transformations of lhe group. The order parameter betongs to the latter class: specifically. it in a macroscopic property of the system which is not invariant with respeet to some group of symmetry transformations of the Hamiltonian. Here we will be concerned with a scalar field only but the results can be extended w diclds with other symmetry group.

Macroobservables are generally ohtamed as space averages of bocal microobervables [e.g., products of fied operators $\psi(\mathbf{r}, t), 4,(\mathbf{r}, t)$] and the detimion requires the limit of atn infinte volume of integration. ${ }^{1-1}$ Thi. requirement cannot be exactly met when megrating over the finte volume of the cells. however: we choove the sie of each cell large enough that on a microscopic scale it can be regarded as intinite to a good approximation and the resulting local macroseopic order parameter can be treated a a classabal tield. A rough scale for the coarse-graining will be the range of the interacturn.

From now on we shall assume that the configurations of the system are described by an otherwise unspecified classical scalar fick order parameter defined by

$$
\eta(x) \quad\left(w^{1} \mid d y^{\prime} \hat{y}(\underline{y})\right.
$$

where $\hat{\eta}$ is the corresponding microscopic observable and as is the volume of the cell centered at \mathbf{x}.

3. FREE ENERGY FUNCTIONAL

If on a micrencopic seale the volume of the cell call be considered inlinite, on the other hand, on a macroseopic sate it must be small wo that the coarse-graining does not alter substantially the dexcription of the phemomena of interest. Specifically, as suggeved by the divergence of the statio susceptibility, L:q. (2), only long-waveiengh, long-range eflech are spected to be important in the neighborhood of the transition. Hence the ste of the cell must be small compared to the dominamt wavelength.

At a given temperature T and for a given value of the order parameter $\eta(\mathbf{x})$ the cell around \mathbf{x} contribute tw the wat free conergy the amomen oF($T, \eta(x)$). Since ω is finite and smatl. Hhs quanat! s analytice:3 both in I° and η : we may then expand in power seres and. dividing through by (. we find for the free energy density

$$
\begin{equation*}
F(\Gamma, \eta(\mathbf{x}))-F_{\mathrm{n}}(T) \cdot I_{\eta^{2}}(\mathbf{x}) \cdots B_{\eta}^{\prime}(\mathbf{x}) \tag{4}
\end{equation*}
$$

"ith $A \quad \alpha\left(T-T_{r}\right), \therefore \because 0, B=0 ; T_{r}$ is a lixed kmperature (nee dincussion in Section 8) and $F_{0}(T)$ represents the free coergy density when $\eta \cdots$. which we shall not explicitly consider from now on. None of the results in the present paper will depend on this particular chore of the coelficients. This form is suggestive and makes the relation of the :nodel to previous calculations more explicit. For example, the lsing model of a magnet with infiniterange interaction leads to a free energy of the above lorm ${ }^{(13)}$: If J is the strength of the interaction, then the average energy in simply $I \quad J M^{2}$, where M is the average magnetzation and J. 0. Irom a combinatorial argument 11 can be shown that the entropy S, the logarithm of the number of states with a given M, has an expansion of the form SiM) a. $1 M^{2}$ b. M^{1}

$$
F(T, M)=E \cdot T S \quad(J \quad a \Gamma) M^{2} \quad T b M^{4}
$$

If we now dsoume that the cells ate imberendent of one another, then the free energy for a given distribution is given by

$$
\begin{equation*}
F \eta_{i}^{\prime} \text { a } \sum_{1} F\left(r_{i}\left(\mathbf{x}_{1}\right)\right) \quad \text { " } \sum_{1} \eta^{\prime}(\mathbf{x},) \cdots B \eta^{1}(\mathbf{x},) \mid \tag{.5}
\end{equation*}
$$

where the sum is extended over the cells and $2 \boldsymbol{x}$, is the whlue of the order parameter at the i th cell in the considered divitribetion of the field.

[^0]The partition function is then ohtained by summing over all possible distributions

$$
\begin{equation*}
\left.Z=\int_{\approx}^{+\infty} \prod\left|\frac{d \eta}{\epsilon(\omega)} \exp \right| \quad \beta\left(\omega \sum \Gamma(\eta,)\right) \right\rvert\, \tag{6}
\end{equation*}
$$

where we have replaced $\eta\left(\mathbf{x}_{1}\right)$ by η, and $\epsilon(\omega)$ is a normaltation factor that depends only on the size of ω.

In the limit in which the volume of the cell can be regarded as small, we represent the free energy (5) by an integral over the volume of the systen

$$
\begin{equation*}
\left.F|\eta|=\int_{!} d r \mid A \eta^{2}(\mathbf{x}): B \eta \eta^{4}(\mathbf{x})\right] \tag{7}
\end{equation*}
$$

and the partition function by a functional integral over the space of functions $\gamma_{\gamma}(\mathbf{x})$ that satisfy appropriate boundary conditions and do not vary on a scale shorter than our graining
where

$$
\int\left\langle\left\{\eta\left|\quad \lim _{0}\right| \prod_{\epsilon} \underset{\epsilon(0)}{d \eta}\right.\right.
$$

The ensemble average of an arbitrary functional Fill 1 of $\eta(\mathbf{x})$ in this formalism will be defined by

If we make the additional assumption that the mean walue of η is the most probable one, then from Eq. (7) and (8) we recover the results of Landau theory. ${ }^{(7)}$ That is, we find that the most probable distribution of the field is uniform and the value $\bar{\eta}$ of the order parameter satisfies the equation

$$
\left[A-2 B \bar{\eta}^{2}\right] \bar{\eta} \quad 0
$$

On the other hand, if we do not replace the partition function (8) by its saddlepoint value and compute the order parameter correlation function taking the following ensemble average

$$
\begin{equation*}
\left\langle\eta(\mathbf{x}) \eta\left(x^{\prime}\right)\right\rangle=Z^{1}\left\lceil\mathcal{S}^{\prime} \eta_{i}^{\prime} \eta(\mathbf{x}) \eta\left(\mathbf{x}^{\prime}\right) e^{\text {fir: }}\right. \tag{9}
\end{equation*}
$$

we see that there is no corrclation for $x \quad x^{\prime}$.
In fact, assuming that \mathbf{x} is in the ith cell and \mathbf{x}^{\prime} in the i^{\prime} th cell, Eq. (9) can be rewritten as

$$
\begin{equation*}
\left.\left\langle\eta(\mathbf{x}) \eta\left(\mathbf{x}^{\prime}\right)\right\rangle=\lim _{\omega \rightarrow 0} Z^{-1} \int^{+}| |_{t(\omega)}^{d \eta} \eta_{i}, \eta, \exp \mid-\beta \omega \sum_{1} f(\eta)\right\} \tag{10}
\end{equation*}
$$

which vanishes for $i ; i^{\prime}, F\left(\eta_{j}\right)$ being an even function of its argument.

We arrive, therefore, at the conclusion that the free energy functional (7) is inadequate to describe a regime of the system where the cells are strongly interacting with each other as the previously mentioned divergence of the static susceptibility indicates.

In order to have a theory suited to describe the neighborhood of the transition, following Ferrell ${ }^{(1)}$, we add to the local free energy density (4) a nonlocal contribution of the form

$$
\begin{equation*}
\left.\eta(\mathbf{x}) \int d^{s} x^{\prime} \lambda\left(\mathbf{x} \quad \mathbf{x}^{\prime}\right) r_{i} \mathbf{x}^{\prime}\right) \tag{11}
\end{equation*}
$$

As it was remarked above, in the region of interest we expect long-wavelength variations to be dominant, hence we may expand $\eta_{j}\left(x^{\prime}\right)$ in Taylor series and retain only the lower-order terms,

$$
\eta\left(\mathbf{x}^{\prime}\right) \quad \eta(\mathbf{x})+\mathbf{r} \cdot \nabla \eta(\mathbf{x}) \cdot \boldsymbol{r}: \Gamma_{\eta}(\mathbf{x}) \quad \cdots, \quad \mathbf{r} \quad\left(\mathbf{x}^{\prime} \quad \mathbf{x}\right)
$$

Carrying out the integration, we see that from the invariance of the kernel $\lambda\left(\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)$ under rotation and reflection expression (11) reduces to $a \eta^{2}(\mathbf{x}) \cdots A_{0} \eta(\mathbf{x}) \nabla^{2} \eta(\mathbf{x})$, with

$$
a \int d^{s} r \lambda(|\mathbf{r}|)<0, \quad A_{\|} \quad(1,2, r) \mid d \operatorname{ľr}^{2} \lambda(\mathbf{r}) \cdots 0
$$

Adding this result to the free energy density in Eq. (10) we find the free energy functional

$$
\begin{equation*}
F\{\eta\}=\int d^{\prime} x\left[A_{0}(\Gamma \eta)^{2}: A \eta^{2}(\mathbf{x}) \cdot B \eta^{4}(\mathbf{x}) \quad \mu(\mathbf{x}) \eta(\mathbf{x})\right] \tag{12}
\end{equation*}
$$

where the coefficient A has been corrected by a and we have added a lincar term in $\eta(\mathbf{x})$ to describe the more gencral case when there is coupling to an external field $\mu(\mathbf{x})$. The expansion of the nonlinear mentaction term (11), however, is not essential to the development ol the formatisin presented in this paper. The partition function again is obtained by summing over atl the possible distributions of the field.

$$
\begin{equation*}
Z=\int \sin , e^{3} \tag{13}
\end{equation*}
$$

with $F\left\{\eta_{i}^{\prime}\right.$ given by Eq. (12) and a similar moditication holds for the definition of ensemble averages.

4. SPECIAL CASES

If we take the limit $B \rightarrow 0$, the functional integral equation (13) becomes Gaussian and various quantities can be evaluated exactly. For example, if we
assume $\Gamma \because T_{c}$ and $\mu \quad 0$, so that translational invariance holds, we lind for the average order parameter

$$
\langle\eta(\mathbf{x})\rangle_{0} \cdot \chi!\sum^{\prime}\left\{\eta \eta \eta(x) e^{u F_{0} \cdot 川} \quad 0\right.
$$

where the subscript zero indicates that $B .0$.
Furthermore, for the \mathbf{k} Fourier component of the order parameter correlation function one finds

$$
\begin{equation*}
\int d^{s} r\left\langle\eta(\mathbf{x}) \eta\left(\mathbf{x}^{\prime}\right){ }_{\|} \exp i \mathbf{k} \cdot \mathbf{r}\left(2 \beta A_{\|} h^{2} \quad A\right]\right) \tag{14}
\end{equation*}
$$

The \mathbf{k}. 0 component diverges as A - 0 (T approaches T_{r}), this corresponds to the divergence of the susceptibility. thus the transition temperature coincides with $T_{,}$and the asymptotic behavior of the correlation function is of Ornstein-Zernike type.

For temperatures $T<\Gamma_{\text {t }}$ there is no stable value of the order parameter in the limit $B=0$.

Another special case we want to consider is that the entire expression (12) for the free energy functional is retalned but the integral (13) is replaced by the largest value of the integrand on the assumption that the mean value can be replaced by the most probable value. In other words, we assume that the fluctuations are very small.

As was stated in the introduction, this approximation leads to the classical results of the Landau-Ginzhurg(ten theory.

Varying F in Eq. (12) with respect to \geqslant, it is lound that the most probable value of the order parameter satisfies the Ginzhurg Landau equation

$$
\left[\begin{array}{lll}
2 A & 4 B \vec{\eta}^{2}(\mathbf{x}) & 2 A_{1}, \Gamma^{2} \tag{15}
\end{array}\right] \vec{\eta}(\mathbf{x}) \quad \mu(\mathbf{x})
$$

If we now write $\mu-\mu \quad \delta \quad \bar{\beta}$. correspondingly $\bar{\eta}$ changes by some o $\bar{\eta}$. and to first order we have

$$
\begin{equation*}
\left[2.4+i 2 B \bar{\eta}^{2}(x) \quad ? 1, \Gamma \Gamma^{2} \| \bar{\eta}(x) \quad o \mu(x)\right. \tag{16}
\end{equation*}
$$

On the other hand, the linear respome of the average of $\gamma(x)$ is given by $\delta^{\prime}, \eta(\mathbf{x}) ; \quad-\beta \int d^{s} x^{\prime} q\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \delta \mu\left(\mathbf{x}^{\prime}\right)$. Where

$$
\begin{equation*}
q\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=[\eta(\mathbf{x}) \cdots \quad \eta(\mathbf{x})]\left[\gamma\left(\mathbf{x}^{\prime}\right)-\eta\left(\mathbf{x}^{\prime}\right) ;\right. \tag{17}
\end{equation*}
$$

Equations (15) and (16) are ued ${ }^{161}$ to derive an expression lor the correlation function q. This is done by identifying $\bar{\eta}(\mathbf{x})$ with $\eta(x) \geqslant$. The result is a correlation function of the Ornstein Zernike type, fielding classical behavior for the susceptibility and the correlation length.

The identification depends, of course, on the absence of fluctuations.

But. as T_{r} is approached the susceptibility diverees and so the theory becomes anconsistent. leading to the Gindorg criterwn. ${ }^{4 \times 1}$ This limits the range of temperatures in which the approximation is applicable.

In summary, the remarks contaned in this section, together with the arguments previously given for the necessity of the square-gradient term, wow that in order to break away from a classical theory, both the correlating $(\sqrt{ })^{\prime \prime}$ term and the nonlinear term $B \eta^{\prime}$ must he meluded in the free energy functional. Furthermore, averages must be computed from the partition function. rather than being substituted by mout probable values. The rest of the paper will be concerned with the de. clopment of the formalism needed (1) achieve this aim.

5. DEFINITIONS AND DERIVATIVE RELATIONS

It is convenient to consider the more penemal form of the free energy functional (12)

$$
\begin{equation*}
F(\eta)^{\prime}-A(12) \eta(1) \eta(2) \vdots B(1234) \eta(1) \eta(2) \eta(3) \eta(4) \quad \mu(1) \eta(1) \tag{18}
\end{equation*}
$$

where 1 - $\mathbf{x}_{1}, 2 \ldots \mathbf{x}_{2}$, etc., integration wer repeated indices is understood, and A and B are symmetric in their arguments.

The particular form (12) is recovered makine the ansar=
$A(12) \quad\left(A-A_{0} \nabla^{2}\right) \delta(1-2), \quad B(1234) \quad B \partial(1 \quad 2) \circ(2.3) \delta(3-4)$

The thermodynanic average of all arbitrary functional (i\{ η; of the order parameter is defined by

$$
\left\langle G\{\eta\} ; Z^{1}\left\lceil\left\{\eta \eta: G\{\eta\}^{c^{3} F_{i}}\right.\right.\right.
$$

In particular, the n-point order parameter correlaton function is the average of the functional $\eta(1) \eta(2) \cdots \eta(n)$.

$$
g(12 \cdots n) \cdots \eta(1) \eta(2) \cdots \eta(n)
$$

so that in this notation the average local order parameter is the one-point correlation function $\langle\eta(1)\rangle \cdots g(1)$.

From the relation between the thermodynamic free energy W and the partition function,

$$
\begin{equation*}
W=-\cdots p_{2}{ }^{1} \log Z \tag{20}
\end{equation*}
$$

it follows that the cumulants can be generated by functional dillerentanton ol W with respect to μ :
where the derivatives are computed at the physical limit; that is, at the value of μ equal to the value of the external field.

In fact, from Eq. (21) it follows that the functions q are related to the correlation functions by

$$
\begin{gathered}
g(1)=q(1), \quad g(12) \quad q(12) \quad q(1) q(2) \\
g(123) \quad q(123) \cdot q(12) q(3) \quad q(13) q(2) \quad q(23) q(1) \quad q(1) q(2) q(3)
\end{gathered}
$$

が,
Furthermore, the cumulants satisfy the derivative relation

$$
\begin{equation*}
\beta^{-1}[\delta ; \delta \mu(n ;-1)] q(12 \cdots: 1) \cdot q(12 \cdots n, n \cdot \mid 1) \tag{23}
\end{equation*}
$$

Similar relations satisfied by the corrdation functions are

$$
\begin{aligned}
& \left.\beta^{1}[\delta / \delta \mu(n ; 1)] g(12 \cdots n) \quad \mid g(12 \cdots n ; 1) \quad g(12 \cdots n) g(n \cdot 1)\right] \\
& \beta^{-1}[\delta / \delta A(n \cdots 1, n+2)] g(12 \cdots n) \\
& \quad[g(12 \cdots n \cdots 1, n+2) \quad!(12 \cdots n) g(n ; 1, n \quad 2)]
\end{aligned}
$$

For the later reference, we note that

$$
\beta-1 \delta g(12) / \delta A(34) \quad[g(1234) \quad g(12) \therefore(34)]
$$

and expressing the correlation finctions entering both sides of the equation in terms of the cumulants, we have

$$
\begin{align*}
\beta^{-1} \delta q(12) / \delta A(34) \quad \cdots & {[q(1234) \quad q(123) g(4): q(124): g(3)} \\
& \because q(13) q(24): q(14) q(23)]
\end{align*}
$$

6. EQUATIONS FOR THE ORDER PARAMETER AND THE CORRELATION FUNCTION

The local average order parameter in absence of an exterimal fied is obtained by taking the limit

$$
\begin{equation*}
\lim _{\mu \rightarrow 0} \delta W / \delta \mu(1) \quad \lim _{, \rightarrow+1}:(1) \tag{26}
\end{equation*}
$$

When translational invariance is assumed the r.h.s. becomes independent of position. The phase in which this average is nonzero is called the ordered
phase and the other the disordered phace an Let us lirst consider the latter case. An equation for the two-point correlation function can be immediately ohtained from the identity ${ }^{5}$

In fact, carrying out the differentation under the integral, we obtain

$$
\beta \because \eta(2) \delta F(\eta) \delta \eta(1) \quad \Delta(1)
$$

so that, computing explicitly the derivative and taking into account the symmetry of the coefficients in Eq. (18), the above equation becomes

$$
2 \beta A(1 \overline{2}) g(\overline{2} 2) \quad i-4 \beta B(1 \overline{2} 34) g(\overline{2} 342) \quad \delta(1 \quad 2)
$$

or, in terms of the cumulants,
$2 \beta . A(12) q(22)+4 \beta B(1234)[3 q(34) q(22) \quad q(2342) \mid \quad \delta(1 \quad 2) \quad$ (28)
If we define the inverse function

$$
\begin{equation*}
q_{0}{ }^{1}(12) \quad 2 \beta 1(12) \tag{29}
\end{equation*}
$$

and the analog of a "mass operator": W(I2) by

$$
\begin{equation*}
M(12) q(\overline{2} 2):-4 \beta B(1234)[3 q(34) q(\overline{2} 2) \div q(\overline{2} 342)] \tag{30}
\end{equation*}
$$

Equation (28) can be cast in the form

$$
\begin{equation*}
\left[q_{0}{ }^{2}(1 \overline{2}) \quad M(12)\right] q(22) \quad o(1 \quad 2) \tag{31}
\end{equation*}
$$

Equation (31) is similar to Dysons copuation for the Green's function in quantum field theory. We shall exploit this formal analogy to extend to this problem the techniques used in many-body theory to generate selfconsistent approximation for the correlation lunction.

In the ordered phase the formalism somewhat complicated by the occurrence of a nonvanishing value for the averape order parameter.

We define a new field variable ξ describing the local fluctuations of the order parameter,

$$
\begin{equation*}
(1) \quad \eta(1) \cdot y(1) \tag{32}
\end{equation*}
$$

[^1]Then, in terms of $\stackrel{t}{6}$ and g the free energs functional (18) reads

$$
\begin{equation*}
F n_{1}: L_{1}^{\prime} g^{\prime}:\left(q_{1}, g\right. \tag{33}
\end{equation*}
$$

with

$$
\begin{align*}
I\{g\}= & A(12) g(1) g(2)-B(1234) g(1) g(2) g(3) g(4)-\mu(1) g(1) \\
G\{\xi, g\}= & A(12)[2 g(1) \xi(2)+\xi(1) \xi(2)] \\
& -i B(1234)[4 g(1) \xi(2) \xi(3) \xi(4)!-6 g(1) g(2) \xi(3) \xi(4) \\
& +4 g(1) g(2) g(3) \xi(4): \xi(1) \xi(2) \xi(3) \xi(4)] \mu(1) \xi(1) \tag{34}
\end{align*}
$$

As a consequence, for the partion function we have

$$
\begin{equation*}
\% \cdot e^{-\beta C\{(n)} \mathscr{Z}\{\mathrm{g}\} \tag{35}
\end{equation*}
$$

with
so that we the free energy becomes

$$
\begin{equation*}
W \because L\left\{g_{j} ;{ }^{1} \log \mathcal{Y}(g)\right. \tag{37}
\end{equation*}
$$

The average of an arbilrary function $\{\xi)$ will be defined by

$$
\begin{equation*}
\left\langle\mathscr{F}\{\xi\}:=: \mathscr{X} \mathcal{X}^{1}\left\{g _ { 1 } ^ { \prime } \int \mathscr { X } \left\{\xi _ { i } \cdot \tilde { F } \left\{\xi_{i} e^{n ;\{\{, 0\}}\right.\right.\right.\right. \tag{38}
\end{equation*}
$$

In particular, averages of products of the liek variable y are referred to as subtracted correlation functions. We have

$$
\begin{aligned}
&\langle\xi(1)\rangle \equiv 0, \quad\langle\xi(1) \xi(2),=q(12), \quad \xi(1) \xi(2) \xi(3) ;=q(123) \\
&\langle\xi(1) \xi(2) \xi(3) \xi(4)\rangle=q(1234) \cdots q(12) q(34): q(13) q(24) \because q(14) q(23)
\end{aligned}
$$

as follows from the definition (32) of the field variable ξ and the relations (22) between cumulants and correlation functions.

Thus, if we now consider the identity

$$
\int \mathscr{D}\{\xi\}[\delta / \delta \xi(1)] \mathfrak{c}^{-3 G ; t, n)} 0
$$

and carry out the differentiation, we obtain $\delta G\{\xi, g\}_{\}} \delta \xi(1)=0$. That is, $2 A(12) g(2)+4 B(1234)[3 g(2) q(34): g(2) g(3) g(4):-q(234)] \cdots \mu(1)-0$
where we have used Eqs. (34) and (39), and for generality we have kept a nonvanishing value for the external field. Defining the effective source function

$$
\begin{equation*}
K(1) \quad-4 B(1234)[g(2) g(3) g(4): 3 g(2) \varphi(.34): q(234)] \tag{4}
\end{equation*}
$$

The above equation for the order parameter can be rewritten in the form

$$
\begin{equation*}
\beta^{-1} q_{0}^{-1}(12) g(2) \quad \mu(1): K(1) \tag{42}
\end{equation*}
$$

In principle, if we could solve exactly this functional equation for an arbitrary spatially varying external ficld, complete information on the equilibrium properties of the system would be obtained by generating correlation functions of higher order by functional differentiation of the solution for g witi respect to μ. We see, however, from the definition (41) that K depends on g both explicitly and implicitly through the cumulants, and an exact solution is not possible.

In view of the necessity of turning to approximations. it is convenient to derive an equation also for the two-point cumulant. This allows us, on the one hand, to extend to the case where there is a condensed phase the techniques employed to generate systematically approximation schemes for "normal" systems, and on the other hand to regard the two-point cumulant as an independent variable in its own right, along with the order parameter as, for example, is the case in the so-called \mathbb{d}-derivable approximation schemes. ${ }^{(20)}$ Furthermore, for the kind of equilibrium properties of the system we are interested in, the order parameter and the two-point cumulant are the central objects in the theory. From the latter we may, in fact, easily derive the susceptibility in zero external lield and the correlation Iength. Recalling that the susceptibility is given by the response of the average order parameter to a small uniform external field, we have

$$
\begin{equation*}
x=(1: 52)[d 1[\log (1): \mu] \tag{43}
\end{equation*}
$$

where. for a uniform variation of the external fich.

$$
\begin{equation*}
\delta g(1) / \delta \mu \cdots i) 12 q(12) \tag{44}
\end{equation*}
$$

Hence

$$
\begin{equation*}
x \quad(\beta ; \Omega)!d^{1} 1 d 2 q(12) \tag{45}
\end{equation*}
$$

Since we consider uniform variations of μ. translational invariance holds, so that

$$
\begin{equation*}
\left.x=\beta \int_{\Omega} d x(1-2) q(1 \quad 2) \quad \beta y+k \quad 0\right) \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
q(k) \quad \int_{s} d(1 \quad 2) c^{\cdots \cdots 1} 2 q(1-2) \tag{+7}
\end{equation*}
$$

For the correlation length we have

To derive the equation satisfied by the two-point cummulant, we consider the identity

Carrying out the derivation, we obtain

$$
\begin{aligned}
& 2 \beta A(1 \overline{2})\langle\xi(\overline{2}) \xi(2)\rangle-4 R B(\mid \overline{2} 34)[3 g(\overline{2}), \xi(3) \xi(4) \xi(2), \\
& \quad+3 g(3) g(4) \in \xi(\overline{2}) \xi(2) \quad \xi(\overline{2}) \xi(3) \xi(4) \xi(2)\rangle] \quad \delta(1 \ldots 2)
\end{aligned}
$$

where we have used Eq. (34) and the first of tqs. (39). Comparing this with the rest of Eqs. (39), we obtain

$$
\begin{align*}
& 2 \beta A(1 \overline{2}) q(\overline{2} 2)+4 \beta B(1 \overline{2} 34) \mid 3 g(3) g(4 ; q(\overline{2} 2)-3 q(34) q(\overline{2} 2) \\
& \quad+3 g(\overline{2}) q(342): q(\overline{2} 342)] \cdot g(1 \tag{50}
\end{align*}
$$

We may now define the analog of the "mass operator" by

$$
\begin{align*}
M(1 \overline{2}) q(\overline{2} 2)= & -4 \beta B(1 \overline{2} 34)[3 \varrho(3) g(4) q(\overline{2} 2): 3 q(34) q(\overline{2} 2) \\
& +3 g(\overline{2}) q(342) \quad q(\overline{2} 342)] \tag{51}
\end{align*}
$$

so that, making the appropriate insertion on the I.h.s.. Iq. (50) takes the same form as Eq. (31), i.e.,

$$
\left[q_{0}{ }^{1}(12)-M(12)\right](22) \quad(1-2)
$$

We shall now make some considerations that depend only on the form of Eq. (52).

7. TRANSITION TEMPERATURE AND STRONG COUPLING

In Section 3 we introduced the parameters of the model and among these appeared T_{c}. This temperature was included in order 10 facilitate the comparison with previous calculations, mainly Landau's. ${ }^{(7)}$ However, when one treats the statistical mechanics of the model as expressed in Eqs. (1)
and (2), Γ_{c} loses any particular meaning. Since the model is supposed to describe a system near a transition, we have to define a transilfon temperature within the theory.

A natural definition results immedialely from the relation between the susceptibility and the cumulant q, Eq. (46). At the transition temperature the susceptibility diverges and hence we can define $\%$, as the temperature at which

$$
\begin{equation*}
q^{-1}\left(k: 0, r_{1}\right) \cdots 0 \tag{53}
\end{equation*}
$$

This definition applies both in the ordered and disordered phases.
We mention in passing another possibility for defining T_{r}, namely the temperature at which g vanishes. In other words, we expect that at low temperatures Eq. (42) for the order parameter will possess nonvanishing solutions in the uniform system and with external field $\mu \quad 0$. As the temperature is increased these solutions tend to mero. T_{r} can be defined in the temperature at the which they vanish. The matching of the differen detimitions of T_{T} is no minor burden on an approximation scheme.

Considering the Fourier transforms of $\%$ and $/ 4$, which are defined in the uniform case by
and also

$$
\begin{equation*}
M(12)=(1 / S \Omega) \sum_{k} r^{\prime \prime 11} \because M(k) \tag{156}
\end{equation*}
$$

Fq. (52) can be rewritten as

$$
q(k) \cdots\left[\begin{array}{llll}
q_{0}^{-1}(k) & M(k) \tag{57}
\end{array}\right]^{\prime} \quad[2 \beta A(k) \quad M(k)]^{\prime}
$$

where use was made of Eq. (29). All the functions appearing in (57) depend. of course, on Γ also. The equation for Γ, (53), reads

$$
\begin{equation*}
2 \beta_{\mathrm{r}} A(0, T,) \cdot \|\left(0, T_{1}\right) \tag{58}
\end{equation*}
$$

From (57) and (58) we have

$$
q^{-1}(k, T) \because 2 \beta A(k, T) \cdots 2 \beta_{r} A(0, T) \quad\left[M(, T) \quad 11\left(0, I_{r}\right)\right]
$$

which we consider in two limits:
(a) $\Gamma \rightarrow T_{r}, k \rightarrow \mathbf{0}$. Here

$$
q^{-1}\left(k, T_{r}\right) \cdots 2 \beta_{r}\left[A\left(k, T_{r}\right) \cdots A\left(0, T_{r}\right)\right] \quad\left[M\left(k, T_{r}\right)-M\left(0, T_{r}\right)\right] \quad \text { (59) }
$$

From the arguments leading to (12), one expects

$$
\begin{equation*}
A\left(k, T, \quad A\left(0, T_{0}\right) \underset{i, 1, A_{01} k^{2}}{ }\right. \tag{60}
\end{equation*}
$$

At T_{r} the inverse correlation function should behave as $k^{2} \eta, \eta \quad 0{ }^{(6)}$ If indeed $\eta=0$, then the critical behavior of $q^{\prime}(k)$ has to come from the second term in Eq. (59). namely from

$$
\left.M\left(k, T_{i}\right) \quad M(1), T_{r}\right) \sim+k_{k}=
$$

which will dominate the first term as $h \cdots 0$.
The situation is more interesting in the next case.
(b) $K \rightarrow 0, T \rightarrow T_{r}$. Here

$$
\begin{align*}
q^{1}(0, T)= & 2 \beta A(0, T) \\
= & 2 \beta_{r} ;\left(0, T_{r}\right)
\end{align*} \quad\left[M(0, T) \quad M\left(0, T_{r}\right)\right]
$$

If $A(12)$ is taken from Eq. (19) with

$$
\begin{equation*}
A(0, T) \quad\left(T \quad T_{i}\right) \tag{6,2}
\end{equation*}
$$

as in the discussion leading to $14 .(4)$, then

$$
\begin{equation*}
A(0, T) \quad I(0, T) \quad \vartheta\left(T \quad T_{n}\right) \tag{6.3}
\end{equation*}
$$

If A were independent of T, the firit term in L.q. (61) would vanish. The second term on the r.h.s. of Eq. (6i) is clea ly linear in $T \cdot T_{r}$. But as we know ${ }^{(6)}$

$$
\begin{equation*}
q^{1}(0, T) \cdot \beta_{X}(T)_{T \cdot r_{r}}\left(T \cdot T_{r}\right)^{Y} \tag{1+4}
\end{equation*}
$$

with $\gamma \therefore$. Thus the linear term in $\gamma \quad \Gamma$, has to be exactly canceled by the third term on the r.h.s. of (61). (1) the third term in (61) were merely 10 produce $\left(T-T_{r}\right)^{y}$, that would not sulfice, since near T_{r}, the linear term would dominate for $\gamma \because 1$.

From Eq. (51) it is evident that as $B \rightarrow 0,1 /-0$. The linear term in $T \cdot T_{r}$ is independent of B. The conclusion is that as $T \cdot T_{r}$. 11 cannot have a weak coupling limit. Whatever the size of B, there is always a value $T-\Gamma_{r}$ such that for all T satisfying

$$
T-T_{r} \cdot B^{\prime \prime}, \quad \rho \quad 0
$$

$M(0, T)-M\left(0, T_{r}\right)$ will have a leading term in $T^{*} \ldots, T_{r}$ whose coefficient is independent of B.

This is a result beyond the power of any finite perturbation expansion in B.

8. RENORMALIZED EQUATIONS FOR K AND M

We notice that if we let the average of the order parameter vanish, the functional $1 /$ defined in Eq. (51) coincides with the corresponding functional defined in E.q. (30) and the solution of Fq .152) tend to the solutions of Eq. (31).

It is therefore convenient to devclop the formatiom in the ordered phase; the description of the disordered phase will then be contamed as a particular cane obtained by setting to zero the value of the external ticld and of the average order prameter. Equations (42) ams (5.) are the lirst fwo of an infinite chain of equations relating comalants ol higher and higher order. We can formally close the set of equations by eliminating three-point and tour-point cumulants from the expressions lor K and M, at the expense of introducing a functional integrodifleremal cyuatmon for 11 .

Such a step does not represent any ponere showard the exact solution of the problem; however, it has the advantage that approximation schemes can be derived systematically by iteration of the equation for $14 .{ }^{(9.24}$

The elimination of three- and four-point comulants is carried out using the derivative relations (23), 25), and Dyon's equation, with the result (ice Appendix \wedge)

M(12)

$$
\begin{align*}
& 4 \beta B(\mid 234)[3 g(3) g(4): \quad 3 q(34) \mid \\
& 4 B(\mid \overline{2} 34)\left\{g(\overline{2}) q(3 \overline{3})\left[\delta M(\overline{3} 2) ; \delta_{\mu}(4)\right] \quad q(\overline{2} 3)[\delta M(\overline{3} 2) \mid \delta A(34)]^{\prime}\right. \tag{65}
\end{align*}
$$

which in the disordered phase redaces to

$$
\begin{equation*}
1 / 12) \tag{66}
\end{equation*}
$$

$$
12 \beta B(1234) q(34): 4 B(124) q(33)[d M(32) \sigma 4(34)]
$$

We must now express the derivatives with respect to μ and 1 in terms of derivatives with respect to the natural variables g and q. The method i, closely similar to the renormalization procedure for the source function and the mass operator in Ref. 11.
$.1 /$ depends on μ and A only through s and q. That this is so catn be seen by generating the skeleton diagrams fir $1 /$ by iteration of k.4. (65) and observing that they contain only the bare interaction B, \underline{g} lines. and q lines.

Thus, we may write

$$
\begin{aligned}
& \cdots \beta\left[\frac{\delta M(12)}{\delta g(\overline{3})}\right]_{q} q(\overline{3} 3): \left\lvert\, \begin{array}{c}
\delta M(12) \\
\dot{\delta} q(\overline{3} 4)
\end{array}\right. \|_{\vartheta} q(35) \frac{\partial M(54)}{\delta \mu(3)} q(\overline{4} 4)
\end{aligned}
$$

where Eq. (A.2) of Appendix A was used.

Delining

$$
\left.A^{1}(1234) \quad \delta(1-3) \partial(2 \quad \text { 4) } \quad \mid \delta: M(12): \delta q(\overline{3} 4)]_{,} q(\overline{3} 3) q(\overline{4} 4) \quad \text { (} 67\right)
$$

we obtain

$$
\delta: /(12) ; \delta \mu .3) \quad \beta .1(1212)|\delta .1 /(1 \overline{2})!\partial g(\overline{3})|_{\varphi} q(33)
$$

Similarly, from
we obtain (see Appendix B)

$$
\begin{aligned}
& \hat{B} 1(1, \overline{1} 2)\left[\begin{array}{c}
\delta M(\overline{1} 2) \\
\delta_{1}(\overline{3} \overline{4})
\end{array}\right]_{\mu}[q(33) q(1+1) \cdot q(34) g(43)]
\end{aligned}
$$

Inserting 1 qs. (68) and (69) at Fq. (65), the amounced hitegrodillerential equation for A / is obtained: however. in order what the equations in a form more suitable for generating approxmation whomes. we make a lew ahth. tional formal manipulations.

Recognizing that the derivatise of if wh respee to g give the irreducible vertex part ${ }^{(22)}$

$$
E(1234) \quad \mid 01 /(12) \sin (i+1)]
$$

we proceed to show that the four-pomt vertex function
satislies the Bethe Salpeter equation. In fact. the detinition

$$
A^{-1}(1234): \partial(i \quad \text { i) } \delta(2 \quad 4, \quad \equiv(1234) q(33) q(44)
$$

can be used to obtan the formal capamson

$$
\begin{aligned}
A(1234)= & \delta(1 \quad 3) \delta(? \quad 4): \Xi(1234) q(\overline{3} 3) q(44) \\
& +\Xi(12 \overline{3} \overline{4}) q(\overline{3} 5) q(46) \Xi(56 \overline{5} 6) q(\overline{5} 3) q(\overline{6} 4)
\end{aligned}
$$

Thus, for I we have

$$
\begin{aligned}
\Gamma(1234)= & \Xi(1234) ; \Xi(1212) q(15) q(2619)(5) 3) \delta(6-\overline{4}) \\
& +\Xi(5678) q(7 \overline{3}) q(84): \cdots] \Xi(3 \overline{4} 34)
\end{aligned}
$$

and resumming the series, we find that I satisfios

$$
\begin{equation*}
\Gamma(1234) \quad \Xi(1234) \div \Xi(1212) q(15) q(26) \Gamma(5634) \tag{71}
\end{equation*}
$$

which is the Bethe-Salpeter equation.
Similarly, we may define the threc-point irreducible vertex part

$$
\begin{equation*}
X(123) \quad[01 /(1 ?) \ln (3)] \tag{72}
\end{equation*}
$$

and show that the three-point vertex finction

$$
\begin{equation*}
P(123) \quad \|(1212)[0.1 /(12) .0 g(3)]_{2} \tag{73}
\end{equation*}
$$

is retated to I by the equation (see Appendix ()

$$
P(123) \cdots X(123): \Gamma(1212) q(15) q(26) X(563)
$$

Rewriting Eqs. (68) and (69) in terms of the vertex functions and inserting the result in Eqs. (A.4) and (A .5) of Appendix A. we obtain

$$
\begin{align*}
K(1) \quad & 4 B(1234,[g(2) g(3) g(4): 3 g(2) q(34): q(22) q(3 \overline{3}) P(\overline{2} \overline{3} 6) q(64)] \\
M(12): \quad & -4 \beta B(1234)[3 g(3) g(4): 3 q(34)] \tag{75}\\
& \cdots 4 \beta B(1 \overline{2} 34) g(\overline{2}) q(3 \overline{3}) P(\overline{3} 26) q(64) \\
& -4 \beta B(1 \overline{2} 34) q(\overline{2} \overline{3}) P(\overline{3} 26)[g(3) q(64) \mid:(4) q(63)] \\
& -4 \beta B(1 \overline{2} 34) q(\overline{2} \overline{3}) \Gamma(\overline{3} 267)[q(6.3) q(74) \cdots q(04) q(73)] \\
& 4 \beta B(1 \overline{2} 34) q(\overline{2} \overline{3}) P(\overline{3} 26) q(67) P(789) q(94) q(93) \tag{76}
\end{align*}
$$

Equations (42), (52), (75) (76), (71), and (74) fogedher with the definitions (70) and (72) of Ξ and X provide the desired of equations.

In the disordered phase, s. K, Y, and P vanish identically and the set of equations reduces to Dyson's equallion, with M given by

$$
\begin{aligned}
M(12)-- & 12 \beta B(1234) q(34) \\
& \left.\left.4 \beta B(1234) q(\overline{2} 3) / \prime(3267) \|_{1}(63), y(74) \quad q(64) q(73)\right] \quad 177\right)
\end{aligned}
$$

and the Bethe-Salpeter equation for I'. Eq. (71), with Ξ defined by

$$
\begin{equation*}
\Xi(1234): o .1 / 12) \log (34) \tag{78}
\end{equation*}
$$

9. APPROXIMATION SCHEMES

If we assume that B is a small quantity, we may think of treating the nonlinear interaction by means of ordinary peiturbation theory.

In the disordered plase this amounts to computing the noninteracting corretation function q_{1} in the soluble model $B \quad 0$, thereafter generating expansions for M in terms of B and q_{1} by iteration of $I: q$. (6,6). 211
llowever. this method cannot be evended to the region belon the transition since, as has been already pomited out. Cor $B \quad 0$ there is mo stable order parameter and the nonimeracting corretatom function is ill-defined.

Purthermore, the absence of a weak coupling limit, which we have discussed in Secton 7 and which was pointed out as well by ferreli." ${ }^{11}$ clearly shows that even in the disorderd phase ordinary perturbation theors is insulficient to dencribe the behavor of the sumem at the transtion. It in therefore necessary to consider self-e日ma, ont approximation of infinite order in B. The formal results of the presions section provide the mechanism for generating such approximations in a ज़וֹmatic way

The most simple appoximation wheme are obtaned taking k and $1 /$ (0) some order in g and 9 and solving coll-comsistently the couple of equations (42) and (52). However. care mas be excroned in matching the approximation for M with the approximation for K. In lla one nguided by relations sativied by the exact M and K. For example, difierentiting F.q. (42) with respect to μ. we obtain the equation

$$
\begin{equation*}
\beta^{1} q_{0}^{-1}(12) \delta g(2) ; i \mu(2) \quad a(1 \quad 2) \quad[\delta K(1) \partial \mu(2)] \tag{7リ}
\end{equation*}
$$

Next, if K is regarded as a functional of g only, we may write

$$
\begin{equation*}
\delta K(1): O \mu(2) \quad[\delta K(1) \partial g(2)] \delta g(\overline{2}) \partial \mu(2) \tag{1}
\end{equation*}
$$

and inserting this in Eq. (79), it follows that

Recalling the derivative relation (23) and comparing with t:q. (52), we we therefore that in the exact theory 11 and K an related by

$$
\begin{equation*}
\text { M(12) } \operatorname{Bok}(1) \ln (2) \tag{2}
\end{equation*}
$$

In the theory of interactim? bowns appoximations that preserve the above relation between M and K do satidy die Hugenholtz - Pine theorem and are therefore referred to as "faples" "aprosimations. ${ }^{\text {(4) }}$ "

However, if the approximation in such that f: 4. (82) is not sathblicl, then Eqs. (81) and (52) it follows that $q(12)$ "; ' $\partial g(1): \partial \mu(2)$. That is, within

[^2]the considered approximation the comtationt lianction camot be related to the response of the order paranketer to an external disturbance. To put it differently, only in the case of "gapless" approximations may we derme unambiguously the static susceptibility trom $q\left(\begin{array}{ll}(1 & 0\end{array}\right)$. We represent tiq. 175) pictorially as follows:

Where the completely symmetric interaction is denoted by a dot the curly line represents the order parameter g, the full line represents the two-point cumulant q, and the triangle represents the threc-point vertex function P. We see that the simplest approximation to α is given by the term

$$
\begin{equation*}
39^{7 / 25}-4 B(1234) 9(2) g(3) 9(4) \tag{8.3}
\end{equation*}
$$

Hence, the corresponding "gapless" aproxam, 1 inn in generated by tahing for M the diagram obtained by differentiditg (s.3) whith reapect to g :

$$
\begin{equation*}
{ }^{3}{ }^{3} 5^{5} \quad-12 B(1234) g(3) q(4) \tag{84}
\end{equation*}
$$

Diagrams of this spe for \mathbf{M} and K corropond to the Bogoliubov approximation for liquid helium. ${ }^{120}$ Inserting exoression (83) and (84) in Eqs. (42) and (52) and spectalizing to the tamstational invariant case of a uniform external field, the following equations are obtaned after making the ansatz (19) for A and B :
$2\left[A: 2 B g^{2}\right] g-\mu . \quad 2 \beta\left[A-A_{0} \Gamma^{2}: 6 B g^{2} \mid q(1-2) \cdot o(1-2)(85)\right.$
The first of the above equations is the cquatwe for the order parameter obtained in the Iandau theory. ${ }^{(7)}$ white the secomd one is the equation for the correlation function obtained by Kadanoff it al. ${ }^{[6]}$

Therefore, it appears that the dissical the rery corresponcts to the liret and most smple approximation in the hierachs senerated by taking into account successive diagrams for k.

We just mention bere, and shail recombler the subject more extensively in the next section, that alternatively to the "gnt: wn" scheme there exists the so-called 5 -derivable approximation shems. In h-derivable approximations Eq. (82), satisfied by M and K in the exact theory, need no longer be satistied by the approximate M and K.

Such a distinction, however, does not exi.t in the disordered phase where in zero field K is identically zero. In this case one has only to produce
approximate expressions for M as a functional of q and solve self-consistently E.4. (31). Considering Eq. (66), the lowest-order contribution to M is given by the Hartree term

$$
\begin{equation*}
-12 B B(1234) \text { q }(34) \tag{86}
\end{equation*}
$$

Iterating, one finds to second order

$$
\Longrightarrow \quad 6(4 B)^{2} B(1345) Q(3 \overline{3}) B(324 \overline{5}) Q(44) Q(55)
$$

and to third order

Inserting expression (86) for $\mathrm{M} / \mathrm{in} \mathrm{I} \mathrm{q}$. (i) and making again the ansat (19). for the translational invariant system we find the following equation for the correlation function:

In a forthcoming paper we shall combider the selfeconsistent solution of the above equation, which exhitits a "nomelascical" asymptotic behavior for the susceptibility, and the problem of extending the approximation below the transition.

As was already mentioned, the lith of weak coupling limit compel one to consider self-consistent approxmbilion of mfinite order in B. Fogo beyond the simple schemes of the type mentioned above, one must make full use of the closed set of equations obtained in the previous secton.

The general scheme can be summarized so: From an initial approximato expression for M as a functional of the unknown g and q the irreducible vertex parts Ξ and X are computed by functional diflerentiatoon. Ξ is uned in Eq. (71) to solve for Γ, and P is catculated lirm I.q. (74). In I urn I^{\prime} and I^{\prime} are inserted in the equations for K and $17 .(75)$ and (76), respecticely, which must be solved self-consistently together with the equation for ${ }^{g}$ and q.

In its simplest version this program give the shidded potential approximation for the correlation function. Limiting ourselves to the disorderes phase and taking as the initial approximation for $1 /$ the Hartece term

from 1.4. (78), Ξ reduces to the bare interaction • Inserting thin result in Eq. (71). I' is obtained as the sum ol all bubble diagrams

Suhstatuting in turn into F. (77) and nerathy, we lind that $1 /$ is given by the sum of all diagrams obtained by removing one q-line from the bubbie ring diagrams:

Going one step further and deriving from the above expression for if the irreducible vertex part Ξ, we ohtain an cquation for I formally similar to the one considered by Riedel. ${ }^{\text {(23) }}$

10. FREE ENERGY

As we have seen previously, quantities he the susceptibility and the correlation length can be readily obtained once the order parameter correlation function is known.

However, another quantity of interest is the specilic heat and this cannot be obtained just from the knowledge of the correlation function. In order to whtain the general thermodynamic propertic) of the sytem asociated with a given approximation to the correlation finction one needs an expression for the free energy as a functional of g and /
()ne can show that a Luttinger Ward"0.1" type of free energy expresion can he obtaned, samely

$$
\begin{equation*}
\beta W \quad \beta \mu(1) g(1)-\beta \pi(12) \mid r(1) g(2) \cdot q(12)]:!\log q(1,1): \vdots 2 d i \tag{87}
\end{equation*}
$$

where the notation $\log q(1,1)$ represent the trace of the matrix log $q(1,2)$. If the system is translationally invariant. then the matrix is diagonal in the momentum representation and $\log q(1,1)$ can be computed summing over the Fourier components $\sum_{p} \log q(p)$.

The functional $\Phi\{g, q\}$ has the following properties:

$$
\begin{equation*}
\left.\left[\delta \mathscr{D} / \delta_{g}(1)\right]_{q}=2 K(1), \quad \mid \delta \Phi / \delta g(1,2)\right]_{R} \quad \beta \cdot \boldsymbol{B} M(1,2) \tag{88}
\end{equation*}
$$

In order to show that Eq. (87) indeed gives an expression for the free energy,
one computes the derivatives of the rh.s. with respect to the parameters A, B, β, obtaining (Appendix I)

$$
\begin{align*}
& \delta(\cdot \beta W) / \delta A(12) \quad \cdots \beta[g(1) . g(2) \cdot: \quad y(12)] \tag{89}\\
& i(-\beta W) / \partial B-\beta\left[g^{1}(1)+6 g^{2}(1) q(11) \cdots 3 q^{2}(11)\right. \\
& \therefore 4!(1) g(111) \cdot q(1111)] \tag{9}\\
& \dot{\sim}(-\beta W) / c \beta=\left[\mu(1) \quad A(12), L^{2}(2) \div \frac{1}{4} K^{\prime}(1)\right] g(1) \\
& {[1, P \cdot 1 /(12)-A(12)] q(12)} \tag{91}
\end{align*}
$$

In Eq. (90) all arguments of the cumblanis are taken at the same point and an integration over the volume of the system is understond. The derivative with respect to B, for simplicity, has been computed in the case of a point interaction, corresponding to the ansatz (19).

In the exact case these derivatives ate equal to the corresponding derivatives of $\log Z$ (Appendix D), where Z is the partition function given in Eq. (35).

Furthermore, dillerentiating ($-\beta H$) with respect to g and q, keeping the parameters constant, it follows that

$$
[\delta(-\beta W) \delta \delta g(1)]_{a}-\beta_{\mu}(1): \beta K(1)-q_{0}{ }^{1}(12) g(2)
$$

$$
[\delta(-\beta W) / \delta q(12)]_{0}=\quad . \quad\left[q_{1}{ }^{\prime}(12) \cdots \quad M(12)-\|^{1}(12)\right]
$$

Therefore, comparing with Eqs. (42) and (52), we find

$$
\begin{equation*}
[\delta(-\beta W) / \delta g(1)]_{\sigma} \cdot\left[\delta(\quad \beta W)_{i} \dot{\partial}(12)\right]_{v} \cdot 0 \tag{92}
\end{equation*}
$$

That is, the expression for the free energy given in Eq. (87) has the property that it is stationary for changen of g and y about their physical values, when the parameters are kept fixed.

Note that the variational property, as well as the functional form of
 ditions: (a) M and K are obtained from a funchonal Φ according to Eq. ($K K$); (b) g and q are solvel self-consistently. Namely, they satisfy l:qs. (42) and (52).

Therefore, for any ϕ-derivable approximation ${ }^{\text {(10.2n) }}$ namely any approximation that satisfics condtions (a) amo (b) abowe, the free energy is stationary for variations of g and $\%$ abwut lien physical values. In addtion, its derivatives with respect to the parameters have the same functional form as the derivatives of the exact lree corgy.

The Φ-derivability of the apuroximation guarantecs the unambiguou. determination of the free energy. i urthermore, the variatoonal property can serve as an important tool for obtainin? nomperturbative approximats. ns for g and q.

In general a toderivable approximation is not at the same time a "gapless" approximation.

To illustrate this point, we combletict the diagrams for 18 and k by iteration of Lq. (65) and Eq. (A.4) of A ppendix A:

Then, with the help of Eq. (88), we can infer the form of the diagrame entering the expansion of b :

If we take, for example, the following approximation for (d):

then, according to Eq. (88), it follow, that
M

In the disordered phase these diagrams reduce i.
 k 0
which is just the Hartree approvmathon matinal:al in Section y
 of equations for g and q of the type encombed an the (imateath Amonat
 "gapless." In fact, when k in regarded as a limetional of genly, we have

where
denotes the sum of the terms obtained taking the derivative with respect to g inside q in the Hartree term. Comparing with the first Eq. (94), we see that Eq. (82) is not satisfied.

APPENDIX A. DERIVATION OF EQ. (65)

From the identity

$$
\begin{equation*}
\partial q(12) / \delta \mu(3) \cdots-q(1 \overline{2})\left[\delta q^{-1}(\overline{2} \overline{3}) / \delta \mu(3)\right] q(\overline{3} 2) \tag{A.1}
\end{equation*}
$$

and Eq. (52), we obtain

$$
\begin{gather*}
\frac{\delta q(12)}{\delta \mu(3)} \tag{A2}\\
\left(-\beta^{-1}\right) \frac{\delta q(12)}{\delta A(34)} \frac{\delta M(\overline{2} \overline{3})}{\delta \mu(3)} q(\overline{3} 2) \tag{A3}\\
(13) q(42)-q(14) q(32)-\beta^{-1} q(1 \overline{2}) \frac{\delta M(\overline{2} 3)}{\delta A(34)}-q(\overline{3} 2)
\end{gather*}
$$

where to derive Eq. (A.3) we have used the symmetry of $A: 2 A(12) \cdots$ $A(12): A(21)$.

Employing the derivative relation (23), the l.h.s. of Eq. (A.2) can he expressed in terms of the three point cumulant and inserting in Eq. (41) we obtain

$$
K(1)=-4 B(1234)\left[g(2) g(3) g(4), 3 g\left(2 \cdot q(31)--\beta^{-1} q(2 \overline{2}) \frac{\delta M(\overline{2})}{\delta \mu(4)} q(\overline{3} 3)\right]\right.
$$

Next we observe that Ey. $\{51$), from the symmetry of the parameter B. can be rewritten as

$$
\begin{aligned}
M(1 \overline{2}) q(\overline{2} 2)=- & -4 \beta B(1 \overline{2} 34)[3 g(3) g(4) q(22)+q(34) q(\overline{2} 2)+g(\overline{2}) q(342) \\
& +q(\overline{2} 234): q(\overline{2} 23) g(4): q(\overline{2} 24) g(3)+q(\overline{2} 3) q(24) \\
& +q(24) q(23)]
\end{aligned}
$$

Hence, comparing with Eq. (18),

$$
\begin{aligned}
M(1 \overline{2}) q(\overline{2} 2)= & -4 \beta B(1 \overline{2} 34)\{3 g(3) g(4) q(\overline{2} 2)+q(34) q(\overline{2} 2)+g(\overline{2}) q(342) \\
& \left.+\left(-\beta^{1}\right)[\delta q(\overline{2} 2) / \delta A(34)]\right\}
\end{aligned}
$$

inserting Eqs. (A.2) and (A.i) in the r.h.s. and multiplying by q^{\prime}, we finally obtain Eq. (65):
$M(12) \quad 4 \beta B(1234)[3 g(3) \mathrm{g}(4) \quad: \quad \dot{g}(34)$

$$
\begin{equation*}
4 B(1234) i g(2) q(3 \overline{3})[\delta M(\overline{3}), \delta \mu(4)] \quad q(\overline{2} \overline{3})[\delta M(\overline{3} 2 / \delta A(34)] ; \tag{A.5}
\end{equation*}
$$

APPENDIX B. DERIVATION OF EQ. (69)

From the second derivative relation (17) and Eq. (A.2), we have

$$
\begin{aligned}
\delta g(\overline{3}) / \delta A(34) \because & -\beta[g(331) \quad\{(3) g(34+1] \\
= & \beta[q(334): g(3) q(33) \text {, g(4)q(33)]} \\
& --\beta[g(3) q(\tilde{3} 4)+g(4) q(\overline{3} 3)]-q(35)][\delta M(56) / \delta \mu(4)] q(63)
\end{aligned}
$$

while from Eq. (A.3)

$$
\frac{\delta q(\overline{3} \overline{4})}{\delta A(\overline{34})}:-\beta[q(\overline{3} 3) q(\overline{4} 4): q(34) q(43)]: q(\overline{3} 5) \frac{\delta M(56)}{\delta A(34)} q(6 \overline{4})
$$

Hence, substituting in

$$
\frac{\delta M(12)}{\delta A(34)}:\left[\frac{\delta M(12)}{\delta g(3)}\right]_{v} \frac{\delta g(3)}{\delta A(34)}:\left[\begin{array}{c}
\delta M(12) \\
\delta q(3 \overline{4})
\end{array}\right]_{v} \cdot \frac{\delta q(3 \overline{4})}{\delta A(34)}
$$

we obtain

$$
\begin{aligned}
\frac{\delta M(12)}{\delta A(34)} \cdots & \cdots \beta\left[\frac{\delta M(12)}{\delta g(\overline{3})}\right]_{\sigma}[g(3) q(\overline{3} 4) \quad g(4) q(33)] \\
& \left.\cdots \frac{\delta M(12)}{\delta g(\overline{3})}\right]_{\sigma} q(35) \stackrel{\delta M(56)}{\partial \mu(4)} q(63) \\
& \cdots \beta\left[\frac{\delta M(12)}{\delta q(\overline{34})}\right]_{\sigma}\{q(33) q(\overline{4} 4): q(34) q(43)] \\
& \vdots\left[\frac{\delta M(12)}{\delta q(\overline{34})}\right]_{\sigma} q(35) q(\overline{4} 6) \frac{\delta M(56)}{\delta A(34)}
\end{aligned}
$$

This can be rewritten as

$$
\begin{aligned}
\frac{\delta M(12)}{\delta A(34)} & \cdot\left[\begin{array}{c}
\delta M(12) \\
\cdots q(\overline{3})
\end{array}\right]_{,} q(35) q(46) \stackrel{i M(56)}{\delta A(34)} \\
& \cdots \beta\left[\frac{\delta M(12)}{\delta g(\overline{3})}\right]_{,}[g(3) q(34): g(4) q(33)] \\
& -\beta\left[\frac{\delta M(12)}{\delta q(\overline{3} 4)}\right]_{\sigma}[q(33) q(\overline{4} 4)+q(34) q(\overline{4} 3)] \\
& \cdots\left[\frac{\delta M(12)}{\delta g(\overline{3})}\right]_{q} q(35) \frac{\delta M(56)}{\delta \mu(4)} q(63)
\end{aligned}
$$

That is, using Eqs. (67) and (68),
$\Lambda^{1}(1234) \underset{8 . A(34)}{i M(34)}$

$$
\begin{aligned}
& \beta\left[\frac{\delta M((12)}{\delta g(\overline{3})}\right]_{,}[g(3) q(34) \cdots g(4) q(\overline{3} 3)] \\
& \beta\left[\begin{array}{c}
\delta M: 12) \\
S q(\overline{3} 4 ;
\end{array}\right]_{v}[q(\overline{3} 3) q(\overline{4} 4) ; q(\overline{3} 4) q(\overline{4} 3)] \\
& \left.\beta \left\lvert\, \frac{\delta M(12)}{\delta q(3)}\right.\right]_{q} q(35) A(565 \overline{6})\left[\frac{\delta M(56)}{\delta g(7)}\right]_{q} q(74) q(63)
\end{aligned}
$$

and multiplying to the left by $A, 14$. (69) follows.

APPENDIX C. DERIVATION OF EQ. (14)

From the definition (72) and (73) of X and P and the expansion for A we have

$$
\begin{aligned}
& X(123) \quad \Xi(12 \overline{12}) q(15) q(26)\{\delta(5-3) d(6-4) \\
& \therefore=(9678) \varphi(73) q(8 t) \cdots \cdots(343)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { : (13) } 4(24,1(\overline{3}+3)
\end{aligned}
$$

and observing that the quantity in the brace adds up to Γ, we obtain Eq. (74)

APPENDIX D. LUTTINGER-WARD FREE ENERGY

An arbitrary diagram for \boldsymbol{f} comains interaction vertices B, y lines, and q lines. Therefore Φ depends on A only througig g and q.

Differentiating F. (87) with respect to $\mathrm{f}(12)$, we obtain

Using Eq. (88), the above expression becomes

$$
\begin{aligned}
& \left.\frac{\delta(-\beta W)}{\delta A(12)}=\beta-2 \cdot(\overline{1} \overline{2}) g(\overline{2})+\mu(\overline{1})+\kappa(\overline{1})\right] \begin{array}{l}
\delta g(\overline{1}) \\
\delta A(12)
\end{array} \\
& { }_{2}^{1}\left[2 \beta A(12) \cdots M(12) \cdots q^{-1}(12)\right]{ }_{S A(12)}^{\partial y(i 2)} \\
& \cdots \beta[g(1) g(7)+q(121]
\end{aligned}
$$

Comparing with Eqs. (42) and (52). The quantites in the brackets vanish and we finally have

$$
\begin{equation*}
\delta(-\beta W)_{l} \delta A(12)-\cdots \beta[g(1) g(2) \cdots q(12)] \tag{D.1}
\end{equation*}
$$

On the other hand, considering the partition function Z given in Eq. (35), we have

$$
\left.\delta(\log Z)^{\prime} \delta A(12) \quad[\delta(\beta L) \delta A(12)] \quad, \dot{ }(-\beta G) / \delta A(12)\right\rangle
$$

Using Eqs. (34) and (39), we may compute the above derivative explicitly:

$$
\begin{align*}
\delta(\log Z) / \delta A(12) \cdots & \beta[g(1) g(2) \cdots(12)] \\
& -\beta\{2 A(\overline{1} \overline{2}) g(\overline{2}) \quad \mu(\overline{1}) \div 4 B(\overline{1} \overline{2} 34)[g(\overline{2}) g(3) g(4) \\
& -3 g(\overline{2}) q(34)-q(\overline{2} 34)]\}[\delta g(\overline{1}) / \delta A(12)] . \tag{D.2}
\end{align*}
$$

Comparing with Eqs. (41) and (42), we obtain the same result as in Eq. (D.1):

$$
\delta(\log C), d(12) \quad . \beta[g(1) g(2): q(12)]
$$

Similarly, differentiating I:q. (87) with respect to B, we obtain

$$
\begin{align*}
& \frac{c(-\beta W)}{\partial B}=\beta \mu(1) \frac{(g(1)}{\partial B}-2 \beta A(12) g(2) \frac{\dot{c} g(1)}{a B} \cdot \beta A(12) \frac{\partial q(12)}{\partial B} \\
& \frac{1}{2} q(12) \frac{\hat{c} q(12)}{\partial B} \quad 2_{2}^{-\beta} \frac{\bar{i} \bar{B}}{} \tag{D.3}
\end{align*}
$$

In order to compute the derivative of Φ with respect to B, we employ a transformation of the type used by Baym in Ref. 10. A given n th-order diagram for Φ contains n interaction vertices and $2 n$ lines, counting two g lines as one. Thus, we may eliminate the explicit B dependence by means of the transformation

$$
\begin{equation*}
g \rightarrow \bar{g}=B^{1: 4} g, \quad q \cdots \bar{q}=B^{1 / 2} q \tag{D.4}
\end{equation*}
$$

Namely, Φ depends on B only through. \bar{g} and \bar{q}. Varying B, now we shall have

$$
\begin{equation*}
\frac{i \phi}{i B} \cdots\left[-\frac{\Delta \phi}{\delta \bar{g}(1)}\right]_{\bar{q}} \frac{i g(1)}{i B}+\left[\frac{\delta \Phi}{\delta q(12)}\right]_{\bar{q}} \frac{i \bar{y}(12)}{\dot{c} B} \tag{D.5}
\end{equation*}
$$

Next we note that from Eq. (88) we have

$$
\begin{align*}
& {\left[\frac{\delta \Phi}{\delta \bar{q}(1)}\right]_{\bar{q}} \because B^{-1 / 4}\left[\frac{\delta \Phi}{\delta g(1)}\right]_{q}=\because 2 B^{-1 ; 4} K^{\prime}(1)} \tag{D.6}\\
& {\left[-\frac{\delta \Phi}{\delta \bar{q}(12)}\right]_{g} \because B^{-1 / 5}\left[\frac{\delta \Phi}{\delta q(12)}\right]_{\sigma} \because=\beta^{-1} B^{1 ; 2} M(12)}
\end{align*}
$$

while from Eq. (D.4) it follows that

$$
\begin{array}{ll}
\frac{\partial g(1)}{\partial B}= & \frac{1}{4} B^{-3 / 4} g(1)+B^{1 / 4} \frac{\partial g(1)}{\partial B} \\
i g(12) & 1 \tag{D.7}\\
\partial B & 2 B^{-1: 2} q(12)+B^{1,2} \frac{\partial q(12)}{\partial B^{\prime}}
\end{array}
$$

Thus, inserting Eqs. (D.6) and (D.7) into E4. (D.5), we obtain

$$
\begin{align*}
\frac{\partial \Phi}{\partial B} & \frac{1}{2} B^{1} K(1) g(1)+2 K^{\prime}(1) \frac{\partial g(1)}{\partial B} \\
& : \frac{1}{2} \beta^{1} B^{-1} M(12) q(12) \cdot \beta^{1} M(12) \frac{c q(12)}{c B} \tag{D}
\end{align*}
$$

Inserting, in turn, this resuit in the r.h.s. of Eq. (D.3) and using again Eqs. (42) and (52), we obtain

$$
\begin{aligned}
\frac{\partial(-\beta W)}{\partial B}= & \beta[\mu(1) \quad 2 A(12) g(2) \cdot K(1)] \frac{\hat{c} g(1)}{\hat{c} B} \\
& -\frac{1}{2}\left[2 B A(12) \cdots q q^{1}(12)-M(12)\right] \frac{c}{c} q(12) \\
& \frac{1}{4} \beta B^{1} K(1) g(1)+\frac{1}{4} B^{1} M(12) q(12)
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\dot{c}(\cdots \beta W) / c B \quad \frac{1}{4} \beta B^{-1}\left[K(1) g(1)!\beta^{1} M(12) q(12)\right] \tag{D.9}
\end{equation*}
$$

From Eqs. (41) and (51), for a point interaction, we have

$$
\begin{gathered}
K(1) g(1)=-4 B\left[g^{4}(1): 3 g^{2}(1) q(11): g(1) q(111) \mid\right. \\
M(12) q(12) \quad-4 \beta B\left[3 g^{2}(1) q\left(11 ; \cdot 3 q^{2}(11) \cdot 3 g(1) q(111): q(1111)\right]\right.
\end{gathered}
$$

where the above notation means that all the arguments of the cumulants are taken at the same point and an integration over the volume of the system is understood.

Therefore, Eq. (D.9) can be rewritten as
$\alpha(-\beta W))_{i} \partial B \quad-\beta\left[g^{4}(1)+6 g^{2}(i) q(11): 3 q^{2}(11)+4 g(1) q(111) ; q(1111)\right]$

The corresponding derivative of $\log Z$ in given by $\frac{c(\log Z)}{c B}$

$$
\begin{aligned}
& \quad \frac{a(-\beta L)}{A B}:\left\langle\frac{1}{c B}\right\rangle \\
& =-\beta\left(2 A(12) g(2)-\mu(1) \cdot 4 B \mid g^{3}(1): 3 g(1) q(11)-q(111)\right] ; \frac{c g(1)}{c B} \\
& \quad-\beta\left[g^{4}(1) \div-6 g^{2}(1) q(11): 3 q^{2}(11) ; 4 g(1) q(111)!q(1111)\right]
\end{aligned}
$$

where the last of Eqs. (39) was used.

Comparing with Eqs. (41) and (42), the coefficient of $\dot{C} g(1) / \partial B$ vanishes and we obtain

```
c(logZ);
```

which is the same as Eq. (D.10).
Finally, for the variation of the free energy with respect to β. we make very similar considerations. We note that the quantity $\beta \Phi$ is dimensionless. Thus, the n th-order diagrams for $\beta \phi$ must contain a factor $\beta^{\prime \prime}$. In other words, $\beta \Phi$ depends on the temperature explicitly through this factor β^{n} and implicitly through the β dependence of g and q.

By means of the transformation

$$
\begin{equation*}
g>\bar{g} \quad \beta^{1 / 4} g, \quad q \cdot \ddot{q} \quad B^{1 \cdot 2} q \tag{D.12}
\end{equation*}
$$

we absorb the explicit temperature dependence into the g and y lines. The effect on $\beta \Phi$ of a variation of β wil. then be given by

$$
\begin{equation*}
\frac{\delta(\beta \phi)}{\partial \beta}\left[\frac{\partial(\beta \Phi)}{\delta g(1)}\right]_{\bar{q}} \frac{\alpha g(1)}{\sigma \beta},\left[\frac{\delta(3 \Phi)}{\delta q(12)}\right]_{k} \frac{i q(12)}{i \beta} \tag{D.13}
\end{equation*}
$$

On the other hand, from Eq. (D.12; we obtam the set of relations

$$
\begin{aligned}
& {\left[\frac{\delta(\beta(D)}{\delta \bar{g}(1)}\right]_{\bar{u}} \cdot \beta^{1,4}\left[\frac{\partial(\beta \Phi)}{\delta g(1)}\right]_{:}=2 \beta^{3,4} k(1)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{r(12)}{\alpha \beta}-\frac{1}{2} \beta^{-1 / 2} q(12) \div \beta^{1: 2} \frac{2 q(12)}{\beta \beta}
\end{aligned}
$$

Thus, Eq. (D.I3) becomes

Taking the derivative with respect to β of Eq. (87), we then obtain

$$
\begin{aligned}
& \frac{\partial(-\beta W)}{\partial \beta}=[\beta \mu(1)-2 \beta A(12) g(2) ; \beta K(1)] \frac{\alpha g(1)}{\partial \beta} \\
& {\left[\beta A(12) \cdots \frac{1}{2} q^{-1}(12) \cdot \frac{1}{2} M(12)\right] \frac{\mathscr{C}(12)}{c}} \\
& ;[\mu(1)-\cdots(\vdots 2) g(2) \cdots K(1)] g(1) \\
& \text { i }\left[\frac{1}{4} \beta^{-1} M(12)-A(12)\right] q(12)
\end{aligned}
$$

i.e., using Eqs. (42) and (52),
$\dot{c}(-\beta W) / \varepsilon \beta=\left[\mu(1)-A(12) g(2)+\frac{1}{d} K(1)\right] g(1) \cdots\left[\beta^{-1} M(12)-A(12)\right] q(12)$

Differentiating $\log Z$ with respect to β we obtain

$$
\begin{aligned}
\frac{c(\log Z)}{\partial \beta}= & \frac{c(\beta L)}{c \beta},\left\langle\frac{\partial(\cdots \beta G)}{\partial \beta}\right\rangle \\
= & -\beta\{2 A(12) g(2)-\mu(1) \\
& \because 4 B(1234)[g(2) g(3) g(4)+3 g(2) q(34) \div q(234)]\} \frac{\partial g(1)}{\partial \beta} \\
& -\left\{A(12) g(2) \cdots \mu(1) \cdots \frac{1}{c}-1 B(1234)[g(2) g(3) g(4)+3 g(2) q(34)\right. \\
& +q(234)]\} g(1)-\{A(12) q(12) \div 14 B(1234)[3 g(1) g(2) q(34) \\
& +3 g(1) q(234) \cdots q(1234)]\}
\end{aligned}
$$

In the above expression the cocfficient of $\partial g(1) / \alpha \beta$ vanishes as can be seen from Eqs. (41) and (42). The rest of the expression, on comparing it with Eqs. (41) and (51), is seen to reduce to
$\frac{\hat{\partial}(\log Z)}{\partial \beta}=\left[\mu(1)-A(12) g(2)+\left\lfloor K^{(1)}\right] g(1)\right\rfloor\left[\ddagger \beta^{-1} M(12)--A(12)\right] q(12)$
which is the same as Eq. (D.14).

REFERENCES

1. R. A. Ferrell, Contemporary Prysics, Vol. I., IAEA, Vienna (1969).
2. J. S. Langer, Phys. Rev. 167:183 (1968).

3a. H. Stenschke and G. Falk, Z. Physik 212:308 (1968).
3b. D. J. Amit, in Proc. /1th Conf. Low Temp. Phys., St. Andrews (1968).
4. A. A. Migdal, Zh. Ekspcrim i Tcor. Fiz. 55:1964 (1968) [English transl. Socict Phys. JETP 28:1036 (1969)].
5. A. M. Polyakov, Zh. Eksperim i Teor. Fiz. 55:1026 (1968). [English tmansl. Soriet Phis.-JETP 28:533 (1969); Zh. Eksperim. i 'Teor. Fiz. 57:271 (1969) [English transl. Soviet Phys.—JETP 30:151 (1970)].
6. L. P. Kadanoff et al., Revs. Mod. Phys. 39:395 (1967).
7. L. D. Landau, Phys. J. Societ $11: 545$ (1937) [English Transl. in Collected Papers of L. D. Landau, D. Ter Haar, ed.. Pergamon Press, London (1965)].

8a. K. G. Wilson, CLNS-142, Cornell University (1971), unpublished.
8h. K. G. Wilson, Phys. Rer. B 4:3174 (1971).
8c. K. G. Wilson, Phys. Rev. B. 4:3184 (1971).
9. P. C. Martin and J. Schwinger, Fhys. Ret. 115:1342 (1959).
10. G. Baym, Phy's. Ret. 127:1391 (1962).
11. C. De Dominicis and P. C. Martin, J. Maht. Phis. 5:14 (1964).
12. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. $28: 258$ (1958).
13. D. J. Amit, Stanford Lecture Notes (1969) (unpublished).
14. B. D. Josephson, Proc. Phys. Soc. Loudon 92:276 (196\%).
15. 1. D. Landau and f. M. Lifshitr, Statistical Phisics, Chapter 14, Pergamon Press. London (1958).
16. R. Brout, Phase Transitions, Benjamin, New York (1965).
17. A. A. Grib et al., (Isp. Fiz. Nauk 102.587 : 1970) [1 nglish transl. Societ Phys ..Uspehhi 13:798 (1971)!.
18. V. L. (jinzburg, Fiz. Fierd. Iola 2:2031 (1970)) [English transl. Soliet Phys-Solid State 2:1824 (1960)].
19. (i. Jona-Lasinio, Nuoto (imento 34:1970 (1904).
20. P. C. Hohenberg and P. C. Martiti, Ann. Phis. 34:241 (1965).
21. L.. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, Niew York (1962).
22. P. Nozieres and J. M. Luttinger, Phes. Rir. 127:1423 (1962).
23. E. Riedel, Z. Phisik $210: 403$ (1908).
24. J. M. Luttinger and J. C. Ward, Phys. Rer. 118:1+17 (1960).
25. C. De Dominicis and P. C. Martir, J. Math. Phys. 5:31 (1964).
26. V. L. Ginzburg and L. D. I.andau, J. Fiphl. Theoret. Phys. (USSR) 20:1064 (1950).
27. I.. Gunther, Phys. Letters 29A:102 (1969).

[^0]: - Such a model is sometimes referred to as the Kittel model. for which we have been unable to find the exact reference.

[^1]: - Witson in the unpublished Ref. 8a has derived ne Schwinger equation for q using the same approach only in the disordered phase. This work callne to our attention only after the completion of the present work and we are grateful to Prof. Kenneth Wilson for bringing it to our attention. See alyo Rell 27 .

[^2]: "This analogy should not be baken wan heraliy. In lact, for the boson whem the: Hugenholz-Pines theorem is a consegtome of the gage mariance of the thent. which does not hold in the present cass:

