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We present a formalism of a scalar, clas,,ical, and time-independent tield 
theory of the type proposed by Forroll flw thc treatment of continuous phase 
transitions. The formalism is developed along lines similar to those of 
many-body theory. All physical quantities, e.g., susceptibility, correlation 
length, and free energy, are expressed a,~ functionals of the two-point time- 
independent correlation function and the order parameter. This is done 
both in the ordered and in the disordered phase. We obtain renormalized 
equations and diagram expala~,iot~,, of all quantities and self-consistent 
approximation schemes are presented. It is shown that near the transition 
temperature, which is defined within the theory, no weak coupling limit 
exists. The generalization to more ct~mplicated field symmetries is straight- 
forward. 

KEY WORDS: Phase transition; field theory; order parameter; renormal- 
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1. I N T R O D U C T I O N  

It} recent  a t t e m p t s  to b r eak  b e y o n d  classical  theor ies  for  genera l  c o n t i n u o u s  

phase t rans i t ions  it was sugges ted  that  the mos t  i m p o r t a n t  ingred ien ts  a re  

the l ong -wave l eng th  spat ia l  va r i a t ion  o f  the  o r d e r  pa rame te r .  O n e  a p p r o a c h  

was to pos tu la te  a s ta t is t ical  mechan ic s  in t e rms  o f  a spat ia l ly  va ry ing  field. 
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The field is defined on a coarse-grained space so that: (a) the field becomes 
classical due to averaging over a cell and (b) effects stemming from variatiow~ 
on a scale smaller than the siLe of a cell are assumed unimportant. (~ :c~ 

In this approach the statistical mechanic,, it prescribed by posttd:ltmg ;t 
weight for each distribution of the lield. More ',pecilically, if ~/(x) is a scalar 
field, then one writes the weight as 

~ here 

w{-q(x)}, cxp[ [3t.{71(x): ] (I) 

F{-q(x)}-- J d~x[A, , (VTi)  z " A , / z  i B,f~l t2) 

where s is the number of  dimensions. Tile partition function ts obtained by 
summing over all possible distributions 7/~x) assuming all other variables to 
have been summed previously. 

In the above A o , A, and B arc con,st:tnt~ whose values are not determined 
within the theory. They arc ill principle czd~'ulated I't'om the microscopic 
theory in coarse-graining and in the climin:ktion of short-range phenomena. 
Explicit calculation of the coefficients is beyond the power of present tech- 
niques. However, the qualitative nature ~1" the transition is assumed to be 
independent of  their particular values, l hcy  can, of course, be determined 
from experiment. 

On the other hand, direct assat~ll,, on the various many-body Hamil- 
tonians have been carried out. Ca '" The dependence of corrclalion functiom, 
on high momentum is eliminated and it is argued that only zero-frequency 
quantities are important. The parameters of the problem, renormalized by 
the above considerations, are again beyond the power of calculation and 
eventually the equations for the correlation functions and the depende~cc. 
near the transition, of  various physical q,;mtitics on the correlation functmn.~ 
are essentially the same a.s in lhe niotlc[ ~tl" tq.  (2). 

Both FerreiP x) and Migdal and Polyakov ~.~ claim that their respective 
restilts for the thermodynamics of the system obcv scaling relations betv.ecn 
lhc critical exponents. ~ei This clearly goes beyond the classical theory '7~ and 
gives a theory which treats its own fluctuations. This should apply all the 
way to the critical point. 

The same problem was recently treated by Wilson (":~Acl using the 
technique of the renormalization grotip t o  qualitatively calculate the critical 
exponents. The latter turn out to have nonclassical values. 

In the present paper we develop the formalism of a theory based on 
Eq. (2). First we motivate the form of Eq. (2) and explain our notion <>f 
the order parameter. Then we consider the classical theory as an approxi- 
mation to the present model and discuss critically the relations obtained in 
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the classical theory between thern+odynamic quantities and Ihc correl:tlitm 
(unction. 

I ollowing these preliminaries, we turn Io ;.I Mudy ot" Ihe l'uH implication,, 
of  our  po~,tulated statistical mechanic,,. \Vc tie Ihi', alt)l |g line,, qmilar I,) 
M a r t i n  ~tlld Schwinger, ~"~ Baym, ~"" al'ltl I)e I)ominicir, .:1110 ,Martil~ ' ~  and 
evciitually arrive at: (a) the equation ol ' "mol l t~n ' "  for the correlat i~m I'urlcliorL 
(b) the expression for the correlation t'uncl~,m in terms, of  a "'tnas~ o p e r a t o r . "  

(c) the self-consistent approximation schcmc~, ~,mt (d) the cxpres',io~ for the 
free energy in terms of  the order parameter c,~rrelation ft~nction. The free 
energy is stationary with respect to variatiom, of  the order parameter and 
correlation function and thus it can bc t~,ed I\~r ~.,Hiatiolaal calctl]atiorts of  
these quantities. 

1 hc discussion of  results is deferred ~,~ ftttttrc communicatttm,,. Generally 
.,,peaking, we feel that the present approach ~4 ct)mplemer~tary to that of  
Wib, on. and a unification of  the two ma}. prove very fruitful. 

2. N A T U R E  O F  T H E  O R D E R  P A R A M E T E R  

,.\ general feature of  continl. . IOLl ' , ,  pha' . ,c  t l~ t l l : , , l l l ( ) l l  ~, I'~ I h c  ; [noln~: l lOt l ' , ,  

behavior of  certain thermodynamic  and re~,pom, c ftmctiom,: examples arc 
the divergence of  the susceptibility for a ll];.IL'.I1CIIC , ,ystem and the divergence 
o1" the c o m p r e s s i b i l i t y  at  the cr i t ica l  poin l  ~)1 a l iquid ga'~ ~,y41cm. lhe, ,e  are  

the mosl divergent quantities. 
Thb, indicates that at the transiiicm the ~,y~,tem is m ,i regime ctotiunatod 

hy large fluctuations with long-range correlat~,,m,. In fact. from line~ir 
response theory the susceptibility X (i '/ ' / ' i  .... <~l'the,l,,crage hulk order 
parameter  ,,,/), with respect to an exlernal di,,Ittrhance / t is related It) the 
order parameter  correlation funclio~ ,/~x) ~/(x I) .k'(x x~). where Ihc 
angular brackets denote ensemble a~eragc hv 

,X' t3 f d"rg(r):  /-', ~ l , t / f ,  r x x' (3) 
�9 t 2  

| h t l s ,  as Ihc lransition is approached ~hc r:~ngc ~31 the correlulhm ft~nct~Jn 
must increase in order for the imcgral t,~ i,c dixcrgent at inlinily. Ihercfore. 
contigurations o f  the system which arc ~-palially nonuniform 131zt3 hc expected 
Io contribute significantly to the Irce t'n~'t gy. 

The free energy for n,muniform 5,.~,IullI~; C;ttl be rcprc,,cntcd by the 
integral over  the volume of  the system of  it free energy den~,hy'~e;: 

/ "=  J" d'v/:(x) 
�9 y . .  

In order to construct F(x). we divide the volume .,r2 of the ,,?..,,tom il~t,~ 
ceils whose volume is small compared to _Q but large enough that a local 

Szz:7/z-3 
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order parameter  can be dclined :~x a classic:ll licld by averaging over the 
~olu me of  the cell some corresponding microscopic observahle. ~] '~.~ ~' 

I o  elucidate this point, we recall thai the concept of  order parameter  
play,, a central role in Ihe phcmmlclu)logical Iheory of  continuou,, thin,q- 
l i o n s .  '~:'' It is a quantity thai v;.uli,,hc ~, "'albovc'" ~ll]d is nonzL'ro "'below" the 
Iransition; in other words, tile numerit';~l value of  the order parameter i~ an 
indication of  the degree of  ordering of  the sy,,lem. 

At the more fundamental  level o f  lhe quantum many-body description 
of  lhe system the appearance of  a nonzero v~due of  the order paranaeter in the 
:thsence of  an external field is a manifestation of  spontaneous symmetry 
brea king.' i.;. l~ 

It J,, a general feature of  many-body physws Ihat, along with microscopic 
observables subjected to the laws o r q u a n t u m  mechanics, there exist properties 
of  the ~ystem macroscopic in Ihe sem, e that their changes obey classical 
la~s '~' ~7' ] o  say this differently, to e;ich ~aluc ,~fan observable to be regarded 
a~, n3acroscopic there correspond~ ,t wl of  ,,talcs distinguished only by the 
value,, of  microscopic observables: lhc m,milold of  lhe-,e state,, Iorn~s a 
I lilbert space and there is no interference bct~cen states heh,nging to I lilhcrl 
spaces associated with different valuc~ of  the m;tcroobscrvable. r A macro- 
ob,,ervable is said to be invariant or  nonin~ariant with re,cpecl to a group of  
t ransformations according to whether the a~sociated ililbelt spaces are 
invariant or not trader the transformuIions oI  ll~c group. The order parameter 
belongs to the latter class: specifically, il i, a macroscopic properly of  the 
.sy,,tem which is not invariant with rc~,pecl to some group of  symmetD 
translk~rmations of  the Flamiltonian. Itere ~,e wi l l  be concerned with a 
scalar field only but the results can be extended to lields with other symmetry 

gro Ul-~,,. 
Macroobservables are generally obtained u,, ,,pace averages of local 

microob,,ervables [e.g., producls of  lield ~perz.lors ~(r, t), ~,6 lr, t)] and the 
detimlion requires tile limit of  an ii|liuile volume of  integrat ion ' r '  lIhi ,, 
requirement cannot be cxactty met when antcgrating o~er tile limte v,~lumc 
of  the cells, however: we choose the size .~1" each cell I~zrge enough thal on a 
micr,~copic scale it can be regarded as intinile t~ a good approximation au,I 
the rc,,ul~ing local macroscopic order parameter can be treated a-, :t clas,qcal 
field. A rough .',talc for the coarse-graimng will be the range o r thc  interact~.,n. 

I r o m  now oil we shal l  asXtllllC lha l  Ihe conligurations of  the system ~rc 
described by an otherwise un,,pecilied clas~,ical .~calar field order parameter  
defined by 

�9 }(x~ o , '  I d"y,ily) 

~,,hcre ;1 is tile corresponding microscopic observable and r is the volume ol  
the cell centered at  x .  
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3. FREE E N E R G Y  F U N C T I O N A L  

If on :x micro,',copic scale the ~,oluine o1 Ihe cull t.'~tll I')e con~,ittcrcd 
inlinite, on lhe o ther  hand,  on a mac~~scopic ,,~~le it n~l~st bc small ,,~ Ih~tt 
the coarse-gra in ing  does n~t a l ter  st]bslzl~li~ll:r the tte,,cri[~lio~ t)f the phcnon~- 
ena of  illleresl. Specilically,  as sugge,,led by tile tti\Cl'gellCC t)l" the st,Hie 
st |sccplibil i ty,  i_'.q. (2), only long-~vaveicngth, long-range elleel', :.~rc e \pcc tcd  
to be impor t an t  in the ne ighborhood  of  tile Ir~lnSilioll. I-Icnce lhc ,,i/~e of  the 
cell must  be small compared  to the dominan t  wavelengths. 

At  a given tempera ture  T and for ~t gi~,en v~duc of  the order  par,ttnctc~ 
t/(x) the cell a round  x eontribttlc,,  tc~ ~hc h)l:ll Il-t'r cI~crgy the ~ln~oIHll 
( o F ( T .  r l ( x ) ) . . " ; incc  co is finite and smzfll, tl,l~ q~t:.l~iil) Is ~tn:dylie ~':" bolh in 1' 
and t/: we may then expand in pox~cr scr~es and. di',l~.ling through by ~,,, 
~c  find for the free energy density 

I" (T ,  r l (x ) )  -~ ,ti~(l 'i  . .t,l"-txi . B,/~(x) 14~ 

\ , i th A ,,~(1' - 7"~), ,-, " - 0, B ~'- 0; T,. is a fixed lempera turc  (see tli,,cussi~n 
H~ Section 8) anti bo(T) represents  the frcc cncrgy density when ~/ 0. ~hieh 
x~e shall not explicit ly consider  from n ~  on. N~me of  the rcstllls ill lilt" 

present paper  will depend on this  par t icular  cht)ice o[" the coefficients. -i'hls 
form is suggeslive and makes  the rel~lti,~n of  the model to previous calcula- 
l ions more explicit. F o r  example ,  the ising, m~,lel of  a magnet with inlinitc- 

range in teract ion leads to a free energy of  the above I'orna'H~: If .I is tile 
s l renglh of  the interact ion,  tllen the average energy is simply I: . I M " ,  ~here  
M is the average magnel tza t ion  and J .  () I r o m a c o m b i n a t o r i a l a r g u m e n t  
Jt edn bc shown that  the en t ropy  S ,  the h~!..*:lrilhn~ o f  the number  of  slates 
~ i th  a given M, has an expansion of  the form S ( , I I )  a.'~l" . b M  ~ ' 

\vilh a * 0. /~ ~ 0. 4 Hence, the free encrr!y ~, ~,~,'n by 

t " (T ,  M )  --~ I-  . T S  ~.1 a l )  ,,Vl e F h M  t 

It" ~vc nt)~ i.l.~,,.,unlc that the ccll~ :~le indepc~ldcnt c)f one another ,  Ihen the 
fice energy for a given distributiozl l~, giVCLI h', 

/"',r / ,t ~,~ \~ /"(  ~i(x, ) t , . _ .  ,, \ i ~ ,  I~1:~,,) B~iJtx)J (5) 

~here  lhe sum is extended over the cells zlf~t ~/(x,) is the ,,,dt~c of  the order  
pa rame le r  at the ith cell in the considered d i , q t ib l t i on  of  the ,icld. 

* Such a model is sometimes referred to as the Kiltcl model. I~r which v,c have been unable 
to find the exact reference. 
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The partition function is then obtained by summing over all possible 
distributions 

z = I I-I ,~ r(,j,)) ~,) 
t 

wherc we have replaced r/(x,) by "q, ;i)i(,I E(~J) i~, a ))orniali,,ation factor that 
depends only on the size of  ~). 

In the limit in which the volume of  the cell can be regarded as small, v,c 
reprcsent the free energy (5) by an integral over the w)lumc of  the system 

FlTl" ': I d> ' lA) / ' (x)  : / I , / ' (x) ]  (7) 

and  the partition function by a [ 'unctiollal  integral over  I]le sp;.lCC o r  functloll,~ 
~/(x) that satisfy appropriate  bounttary conditions and do not vary on a 
scale shorter than our  graining 

Z - J v",,l: c ,~li,,~ 

whcrc 
�9 ( I ) i ,  J ~/n', !!'72 I 11-;(o,) 

The ensemble average o f  an arbitrary functional -?l~j', of  ~,~(x) in thb, 
formalism will be defined by 

(.~-{r/}~ Z ' i < . . . . .  ~,F~,,: : :  f/'4~l) "~',~'1' e 

I1" we make the additional assumption Ihat the mean value o1" "q is the 
most probable one, then from Eq~. (7) and (8) wc rccovcr the results o f  
Landau theory. ~7~ That  is, we find that the most probable dislribution of  thc 
lick] is uniform and the value ~ of  the order paramcler  ,~atistics the equation 

[A 2B~ ~] 0 0 

On the other hand, if we do not replace the partition function (8) bv its 
saddlcpoint  value and compute  the order parameter correlation function 
taking the following ensemble average 

(~(X) "q(x')) = Z I i L/{rll r/(x) r/(x')  c e,v~, ~ 19) 

xve .~ee that there is no corrclalion for x x'. 
lq fact, assuming that x is in the nh cell and x' in t h e / t h  cell, Eq. (9) can 

be rewritten as 

dT], "ti')l' CXp /"(r/,)] 1()1 : !!m Z ,  lj' II , ( , , , ) [  t3~, 2 \ '  "Z](X) r/(x'),'> 
s 

which vanishes for i :7' i', F(rh) be ing  ;In even [unction of  its argument.  
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We arrive, therelbre, at the conclu~,ion that the free energy functional (7) 
is inadequate to dcscribe a regime ol" the ~,ystcm where thc cells are strongly 
interacting with each other as the previously mcnlioned divergence of  Ihc 
static susceptibility indicates. 

In order to have a theory suitcd It) describe Ihe neighborhood of the 
transition, following Ferrell m, we add to the local free energy dcnsily (4) 
a nonlocal contribution o f  the form 

~(x) j d~.r 'A( x x' ),iqx'~ i l l )  

As it was remarked above, in the region of  inlcrc',l we expect long-~avclcnglh 
variations to be dominant ,  hence we may expand ~j(x') in Taylor  serics and 
rclain only the lower-order terms, 

T/(x') r/(x) + r �9 V'q(x) . !.rr : VVrj(x) "", r (x' x) 

( 'a r rying out the integration, wc see that I'rOlll Ihr invariancc of  the kernel 
A(Jx .... x ' ] )  under rotation and rcfleclion expression (11) reduces to 
ar/ '(x) -- A0r/(x ) V2"q(x), with 

f d'~rA([rl) <. 0, A,, 11,2.,) t d<,'r"A( r ) 0 

Adding this result to the free energy den,dry in Eq. (10) ~c find the free 
cncrgy functional 

F{~,]~ = f d<3. " [A0(Vr/) 2 -~ elsie(x) B~,ls(x) Ft(x) ,/{x)] f12) 

where the cocllicient ,4 has been corrected b~ a, :rod wc have added a linear 
term in 7/(x) to describe the more gcneral ca~,c when lhcrc i,, couplil~g to an 
external lield /z(x). The expansion of  the nonline:~r int0r,iction term (11), 
however, is not essential to the development of  the form,ilism prc~entcd in 
thi~, paper. The partit ion function again V, obtained by summing over :ill the 
possible distributions of  the field. 

Z = fL/'{~l', ," .',':,,I t l3) 

with F{~,II given by Eq. (12)and a similar modification holds for the deliniiidn 
of  ensemble averages. 

4. S P E C I A L  CASES 

If we take the limit B ~ 0, the functional integral equation (I 3) becomes 
Gaus~dan and various quantities can be evaluated exactly. For example, if we 
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assume l '  .'.- T~ and /, I), so that translational invariancc holds, ~c  lind 
for the average order  pa ramete r  

('q(x)>0 " / .  t t ' "  '~ (x )  e o j ,  -~], ,if,,: ',i 

where the subscript zero indicates that B 0. 
Fur thermore ,  for the k Fourier  component  of  the order parameler  

correlat ion function one finds 

( d ~ r ( r l ( x ) ~ ( x  ') , , e x p i k - r -  (2~[A,/,'-' A]) ~ 1141 

T h e  k �9 0 c o m p o n e n t  d l \ t . ' r g c ~  a s  A , i) ( / '  ; . t p p r o a c h e s  F~); th i ' ,  

corresponds to the divergence of  the susceptibility, thu,, the transition 
tempera ture  coincides ~,ith T,. and the asymptot ic  behavior  of  the correlation 
function is of  Orns te in-Zern ikc  lype. 

For tempera tures  T -- T, there is no stable value of the order parameter  
in the limit B = 0. 

Another  special case we w.ant to consider is that the entire expression (12) 
for the free energy functional is retained but the integral (13) is replaced bv 
the largest value of  the integrand on the asst, mpt ion that  the mean value 
can be replaced by the most  probable  value. In other words, we assume that 
the fluctuations are very small. 

As was stated in the introduction, this approximat ion  leads to the 
classical results of  the L a n d a u - G i n z b u r g  ~:"' thct,ry. 

Varying F in  Eq. (12) with respect to '/. it is found that the most probable  
value of  the order  pa ramete r  satisfies the Ginzburg  Landau equation 

[2A -: 4B~"(x) 2.I,,V z] *)(x) /Lix) (15) 

if  wc now ~.rite t* - " t~ i51~. correspondingly ~ changes by some i~.  
and to first order  we have 

[2.4 q 12B~Z(x) 2 4,,V e] ,3;/(x) OldXI (1(,) 

On the other  hand, the lineztr rc~porp.c ,,~ the average of  ~llx) is gl~cn 
by 3,('q(x)) - fl f d"x '  q (x ,  x')  ~S/z(x'), wllcrc 

q(x ,  x')  :~ "[r l (x)--  r/(x) ][7/('~') - ~ / (x ' ) , l /  117) 

Equations (15) and (16) are u~ed '';~ to dcri~c an cxprcssion for the cor- 
relation function q. This is done by identi l) ing ~(x) with ,.r/ix)). The result 
is a correlat ion function of  the O~nstein Zernike type, 5ielding classical 
behavior  for the susceptibility and the corrclalion length. 

The identification depends, of  course, on the absence of fluctuations. 
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[:lul. a~, T,. is approached  the ,~usccplil3ilitv diver,cos and so the Ihcory become., 
mcon~b,  ten t .  l e a d i n g  to  the G i n z b u r g  c r i l e r , m . ' " '  Th i s  limit,., the range o f  

temperatures  in which the approximat ion  ix applicable. 
In ~,unmlary, the remarks  contained m lift.,, ,,cclion, together with the 

argumculs  previously given for the nccc,,sily of  Ihe square-gradient  term, 
,,ho~ that in order to break away from ;~ cl:~s~ical Iheory, both the correlating 
I~'t/)2 lcrl33 and the nonlinear term lh l  I I~ltl~l he included in the frce energy 
functional. Fur thermore ,  averages mum bt., compts from the partition 
funclion, rather than being substituted I-~ m~sl probable  vahtes. I-he rest 
of  the paper  will be concerned with the de'. clopmcnl of  the formali,ma ueeded 
to achieve this aim. 

5. D E F I N I T I O N S  A N D  D E R I V A T I V E  R E L A T I O N S  

It is convenient to consider the more !,cne~;|l form of Ihc frec energy 
functional (12) 

l"{-q) - A(12)~(1)~,1(2) ! B(1234) , l ( I )  ,f12) , ,(3), l(4) i , ( I ) ,1 ( I )  ( IS) 

wherc I - x , ,  2 ... x.,, etc., integration ,,~cr icpcated indices i~, understood,  
and A and B are symmetr ic  in their argulnenls. 

The part icular  form (12) is recovered makuta' the a n s a t z  

A(12) ( A - -  Auga) 8(I - - 2 ) ,  B(1234) B,h ( I  2)812 - 3) 8(3 -.-4) 

(19) 

The Iher lnodynamic  average of an arbi trary functional G{~', of  the order 
parameter  is defined by 

(Gin)), Z ~ l'-C/r " , '  ~:"  : (,~ ], e �9 

In particular,  the n-point  order  parameter  correlal ,on function is tile average 
of  the functional .q(l) -q(2) "-" "q(n), 

g(12  "'" n) " .~/(1) ~(21 - "  ~ / I n )  

so that in this notat ion the average local c, rder parameter  i~ the one-point  
correlat ion function (r/(I)7 --= g(I) .  

F rom the relation between the thermod3namic  free energy W and the 
parti t ion function, 

W . . . . . .  [~ I log Z (20) 
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it follows that the cumulanls can he gener:tlcd hv functional ttill~renliallon 
of W with respect to/1,: 

q ( 1 2 " " n )  -: (fl J)' ' ' i3/zOOg/*(n I) " ~31,tl 11 ~21) 

where the derivatives are computed at the phy.sic:fl limit; Ih~t is, at the value 
of/~ equal to the value o f  the external lield. 

In fact, from Eq. (21) it follows that |he ftmctiom, q :ire related to !he 
correlation functions by 

g( l )  =: q( l ) ,  g(12) q(12) q ( l ) q f2 )  (?2) 

g(123) q(123) �9 q(12) q(3) i q(13)q(2)  ] q(23) q(1) q(I)q(2)q(3i 

t:tC. 

Furthermore,  the cumulants satisfy the ,lerivative relation 

/3-1[b/'~p.(n " 1) ]q(12-" .~)  �9 q ( 1 2 " - n , n . I  I) (23) 

6. E Q U A T I O N S  F O R  T H E  O R D E R  P A R A M E T E R  
A N D  T H E  C O R R E L A T I O N  F U N C T I O N  

The local average order par:lnlctcr in absence or" an extern:d licld i,, 
obtained by taking the limit 

lim 8 H//~Sp.( I ) lira ,:( 1 ) (26,j 
Iz I 0  i ,  I I  

When translational invariance i~ :t~umcd the r.h.s, hccome.~ independent 
of position. The phase in which this average is nonzero is called the ordered 

Similar relations satisfied by the correlat ion (unctions arc 

/3 ~[8/~F(n i t ) ]g (12  ..- n) [ t , , (12.- .n ~ I) g(12 --" n) g(n I)] 

f l~[~/~A(n .- l , n  -!- 2 ) ] g ( 1 2 " - J ~  ~?-lJ 

- [ g ( 1 2 . . - n  .,. I , n ~ - 2 t  .:r(12 .-. tt) g(n i I , n  2)J 

For the later reference, we note thvt 

f3-l 6g(12)/SA(34)  1,,(1234) t,'(12) :.'134)1 

and expressing the correlation l'uncti~ms entering both sides of  lhc cquali,,n 
in terms of  the cumulants,  we have 

B -~ ~q(12)/5,4(34) . . . . . .  [q(1234~ q(123)g(4)  i q(124).-,(3) 

, q(13)q(24) i q(14) q(23)] f2 q) 
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phase and the other the disordered pha~c. ~ ' '  Let u~, first con~ider the latter 
casc. An equation for the two-point corrchttlon Function can bc immediately 
obtained from the identity ~ 

I r I ) , . I ;  . I , ' I ,  Jh/h'l(1)Jl ' l(?)" ':1 O (27~ 

In Iact, carrying out the differentalion under the integral, ~c oblzfin 

fl <: ,rl(2) 3F{7/',/6,1( I ) g(I 2) 

st) that, computing explicitly the dcrixali',c and taking into account tile 
symmetry of the coefficients in Eq. (I 8), the ~tbovc equation becomes 

2 3 A ( l l ) g ( 2 2 )  i -43B(1234)g(2342)  6(I 2) 

or, m terms; of  t i le ct tn lu l~Inl 'q 

2/:3.,I(12) q(22) I 43B(1234)[3q(34) q(22) ,I12342)1 6(I 2) (28) 

If wc define tile inverse function 

q, ,q l2)  2/~,I(12) (29) 

and the analog of a "mass operator" :$/(12) bv 

M(12) q(~2) . . . . .  431111234)[3q(34) q(22) - f  q(:2342)] 13(I) 

Equation (2g) can be cast in the l'ornl 

[q0Z(l~) M( I  2)] q122) ,~(I 2) (311 

Equat ion (31) is s imi lm to l)yson'~ cqunti ,m for tile Green's funct ion 
in quantum field theory. We shah exploit  this Formal analogy to extend to 
this problem the technique', used in man~-body theory to generate self- 
consistent approximation for the corrolalion I'ullclion. 

In the ordered phase the formalism r, somewhat complicated b v the 
occurrence of a nonvanishing value re,-lhe average order parameter. 

We define a new lield v:lriablc ~ tlc,~cril~ing the local fluctuation.', of the 
order parameter, 

( l l )  71(1) .~'(I) (32) 

Wilson in the unpublished Rcf. 8a has du.~ivcd iflc Schv, ingcr cqualJon for q using tl~,: 
same approach only in the disordered pha~,c. "lhi.~ work came to our attention only ~d'lcr 
lhc completion of Lhe present work and ,,vr ~irc gralt.'ful to Prof. Kenneth ~Ailson for 
bringing it to our attention. Sce aNo l~.cl. 2 .7' . 
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Then, in terms of '~  and ,1,,, the free cncrg> fttnctional (18) reads 

F{n[ , IJ.~'l : ~,;&.~,,'. 

with 

l-{g] . . . .  A(12) g(I)  g(2) -i- B(1234) g(l)  g(2) g(3) g(4) - t41).e(I)  

G{~, g} ~= A(12)[2g(l)~(2) H.-so(I) sc(2)l 

-I B(1234)[4g(l) so(2) {:(3) ~4)  !- 6 - ( I )g (2 )  ((37 r 

�9 -!- 4g(1) g(2) g(3) ~:(4) : sC(l~ ( (2)  .,.413) z~:(4)] - / , ( I )  ~(1) 

As a consequence, for the partion fimction wc have 

/ , -  e-lJtI,,~.Z~.~} 

with 

C, ~.~ t e'. i J ! G { r  

so that we the free energy becomes 

Daniel  J. A m i t  and Marco Zannet t i  

(33) 

(34) 

(35) 

(36) 

W - . :  L{t,,] ,':3 ' l o g  i l g }  (~7) 

The average of  an arbitrary function .~-{() will be detincd by 

In particular, averages of  products  or the lield variable ,~ are referred to as 
subtracted correlation functions. We have 

(~(1)) .z 0, (sr ~:(2)) :: q~12), '~(I)~:(2),f(3). : ,t(123) 
(39) 

(,,~(1) ~(2) ~:(3) ~(4)) = q(1234) .:. q(12) q(34) : q(I 3) q(24) : .  q(14) q(23) 

as follows from the definition (32) of  the tield variable ~ and the relations (221 
between cumulants and correlation function~. 

Thus, if we now consider the identity 

i" ~ { E } I & ; ~ , ~ / l  ~1 ,' �9 ' " ' , ' .  ' 0 

and carry out the differentiation, we obtain SG{~, g},'6~( I ~ : 0. That  is, 

2A(12)g(2) + 4B(1234)[3g(2) q(34) -! g(2) g(3) g(4) !- q(234)] --- /,(I) ~ 0 

(40) 
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whcre we have used Eqs. (34) and [39), and for generality we have kept a 
nonvanishing value for the external lield, l)clining the effective SOtlrcc 
function 

K ( I )  -4B(1234) [g (2 )g I3 )g (4 )  i 3g(2)q(34) : q(234)] (41) 

"l-he above equation for the order parameter can be rewritten in the form 

f l-~qo~(12lg(2) / t t l )  '.- h(l)  ~42) 

In principle, if we could solve cxaclly thu~ functional equation for an 
arbitrary spatially varying external field, complete information on the cqui- 
librium properties of the system would he obtained by generating correlatic~n 
functions of higher order by functional dittE'renti,~tion of the solution for g 
with respect to/z.  We see, however, from the dclinition (41) that K depends 
on g both explicitly and implicitly through the cumulants, and an exact 
solution is not possible. 

In view of the necessity of turning t,, approximations, it is convenient 
to derive an equation also for the two-point ctlmtdant. "lhi; allows us, on 
the one hand, to extend, to the case where there i,, a condensed phase the 
techniques employed to generate systematically approximation schemes for 
"normal"  systems, anti on the other hand to regard the two-point cumulant 
as an independent variable in its own right, along ~ith the order parameter 
as, for example, is the case in Ille so-called q)-derivable approximation 
schemes. ~"-~ Furthermore, for the kind of equilibrium properties of the 
system we are interested in, the order parameter and the two-point cumulant 
are the central objects in the theory. Fr~m the latter we may, in fact, easily 
derive the susceptibility in zero cxtcnml licld az~d thc corrclation length. 
Recalling that the susceptibility is given by the re.,,ponse of the average order 
parameter to a small uniform external licld, we have 

X : (I,'~2)J" d l  [t~.tr(I),,'~/t] (43) 

where, for a uniform variatiol~ of the cxtern.l licld. 

6g(1)/6 t, .... ,d J" , /2 q(12) (44) 

Hence 

.X" (fill2) .I ,k l  d '2q l12)  (45) 

Since we consider uniform variations ~1" t,. translational invariance 
holds, so that 

= t8 (r d * ( I j  - 2 ) q ( I  2) tg,lIk O) 146) X 
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where 
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q(k) ] dql 
�9 f2 

2)~ ..... I e~q(I -- 2) (47) 

For  the correlation length we have 

~,, fs;~d'~(1. 2)(1 2)eqll 2) I Fq(I,) , 
. : " . . . . . . . . . . . . . . . . . . . . . . .  ! ( 4 8 )  

j�9 2)q(I  2) X' , / , :  I,. ,, 

To  derive the equation satisfied by ~he t~ o-point cure m ulanI, we consider 
the identity 

. 

. " g  ) % ~ 

Carrying out the derivation, we obtain 

2flA(l~)<~(~) ,f(2)5 _z 4.BB( 1~34)[3g(fh~ ,~q3) ((4) ~(2)), 

- i  3g(3)g(4),,~(~)~(2) r ;c(~) ((3)~z(4) ,~(2);,] 

0 (#)) 

~ ( l  . -  2 )  

where we have used Eq. (34) and the first of  t:qs. (39). Comparing this with 
the rest of  Eqs. (39), we obtain 

2flA(l~) q(]~2) 4- 4flB(1234)13.~(3) g(4; q(22) -! 3q(34) q(72) 

-F 3g(~)q(342) : qf2342)] - 6(I 2) 150) 

We may now define the analog of  the "mass opera tor"  by 

M(I~) q(~2) = -4/3B(1")34)[3~.,(?,) gl4) q(22) ! 3q(34) q(~2) 

H 3gO_) q(342) q(3._342)] 1'51) 

so that, making the appropriate  insertitm o~: the I.h.~,.. I.q. (50) takes the 
same form as Eq. (31), i.e., 

[ q 0 ~ ( l ~ ) -  M~12)Jq(22) ,~(I 2) ~2)  

We shall now make some considerations that depend only on the fi)rm 
of  Eq. (52)�9 

7. T R A N S I T I O N  T E M P E R A T U R E  A N D  S T R O N G  C O U P L I N G  

In Section 3 we introduced the parameters of  Ihe model and among these 
appeared To. This temperature was included in order tO fhcilitate the 
comparison with previous calculations, mainly Landau's.  ':~ However, when 
one treats the statistical mechanics of the model as expressed in I!q,,. t I) 
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anti (2), /'~ loses any particular mearmlg. Since the model is ,,upposcd Io 
describe a system near a transition, w c have to dclinc a transilJon lempcralurc 
within the theory. 

A natural delinition results inlmedialclv from Ihe rclatioll belwecn Ihe 
su~,ceptibility and the cumulant  q, Eq. (4(,I. At Ihc Iran~,ition Icmpcraturc lhe 
susceptibility diverges and hence we can define T, zlS the temperature at which 

q-~(k  :. O. I ' , )  �9 t) (53) 

"]his definition applies both in the ordered and disordered phase,,. 
We mention in passing another  possibility for delining Tr.  nalnctv the 

temperature at which g vanishes. In other words, we expect that at low 
temperatures Eq. (42) for the order parameter v, ill pos~,ess nonvani ,hing 
solutions in the uniform system and with external tield t~ 0. As the temper- 
ature is increased these solutions tend to 7cro. /+ can be delined ztS the 
temperature at the which they vanish. The malcl'muz ol ' thc different delinitions 
o f  T, is no minor  burden on an approximation ~,chemc. 

Considering the Fourier transform~ o l q  and % ,  which arc defined in 
the unitbrm case by 

q(12) .. (I.,',12) x/~ ,, ,, t, -'_,q~/. j 154) 
/ .  

q0(12) (I/~'2)~" c 'J'~ -q, , / ,)  G'~) 
! 

and also 

M(12) ::: (I/.(2) 5-- ,' '""  '-".~lt/,) i56) 

Eq. (52) can be rewritten as 

q(k) . -  [qi, L(k) MI/, )] [2~A( l , I  M(k)] ~ 157) 

where use was made of  Eq. (29). All 1he functions appearing in 157~ depcnd. 
o f  course, on T also. The equation for T , .  153). read,, 

2fl ,A(O,  7",) ....'L/~c). I,1 

From (57) and (58) we have 

q - l ( k ,  T )  ,- 2 f l A ( k ,  T ) . -  2fl, A(0, T.)  

Milch we consider in two limits: 

(a) s --: 7",, k -  ,-0. ttere 

q-~(k ,  Tr) = 2 f l r l A ( k ,  Tr)  - -  A(O, 1",)] 

~) 158) 

[.~ttk, 7) M(0. /~)] 

[.141k, T~) - M(O, T~)] 159) 
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From the arguments  leading to (12), one expcct~ 

A(k,  "I,) A(0, I,)i.+-.7.,, ..l,,k z (()t)) 

At 1,  the inverse correlation function should behave as k z ',, ~/ O. ''~' If  
indeed r / > 0, then the critical behavior of  q )(k) has to come I'r(ml the 
second term in Eq. (59). namely from 

M(k, T,) ,")l~(). 7,~ i,-';,, k" " 

which will dominate the lirst term a'< k - ,- 0. 
The situation is more interesting m the next case. 

(b) k ~ 0, T - , .  7",. Hcrc 

q ~(0. T) := 23.4(0, / ' )  2/L..g(0. I'~) [M(0, T) M(O, 7",)I 

= 23[,4(0, r )  .~(o. I,)1 2(3 -/-3,) a((), /~) 

- [M(O. r )  .... (0. 7'At (+,I) 

If A(12) is taken from Eq. (19) ~illa 

At(), T) ~(T T,) (62) 

as in the discussion leading to 1 q. (.1), then 

Ar 7) ..I((). I ,  ) )( I T,.) (<,3) 

If  A were independent of  7", the lir.,I term in Lq. (61) ~sould vanish. I h e  
second term on the r.h.s, of  f!q. (61) is clea ly linear in F - T~. But as v,c 
k no~A, ,(6 ) 

q 'tO, T }  3.\' i(.i-) .... ( 7 .  I',); (,',4) 
I . 7 r 

with y i- I. Thus the linear term ~n / F, has to be e x a c t h  canceled by 
the third term on the r.h.s, of  (61). If the third term m (61) were merely To 
produce ( T -  T~):', that  would not sullicc, since near T, the linear te,m 
would dominate  for ~, 7" 1. 

From Eq. (51) it is evident that :,s B , 0 ,  M - ,  0. qhc  linear term ill 
T - T, is independent of  B. The conclusion is that as 7'" ~ T , .  M canm)T 
have a weak coupling limit. Whatever the sb, c of  B, there is ahvays a value 
T - -  T~ such that for all T satisfying 

! T - -  7"~, . B,',  p 0 

M(0, T) --- M(O, T,) will have a leading term m T-  - T, whose coefficient is 
independent of  B. 

This is a result beyond the power of  any finite perturbation expansi,m 
in B. 
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8. R E N O R M A L I Z E D  E Q U A T I O N S  F O R  K A N D  M 

Wc notice that if we let the average o l  Ihc order parameler vanish, the 
ftmctional .11 delined in Eq. (51) coincides with lhc corresponding I'tmclional 
dclincd in Eq. (30) and the solution~ of  I{t I. (52) tend to the solutions of  
[:q. (31). 

It is therefore convenienl to dcwlop  the Iorm:lti,,nl ill Ihe ordered phase; 
the description o f  the disordcred pha,,c will then bc collhtined as a particular 
c:.|',e obtained by setting to zero thc value o f  the e,~ternal field and of  the 
average order prameter. I~q,ation~ (42~ aml (5?) are the lirst two of  an 
inlinite chain of  equations relaling ctmlulanl,; o1 highcr and higher order. 
We can formally close the set ~1" cqualions by eliminating three-point and 
four-point cumulants from the expressions I,~r K alal M. at the expense of  
introd uc,ng a ft~nctional i ntegrodi(ferenl~al ct I tlZltl ,  H1 for A I. 

Such a step does not represent any l"l~,gr~', stoward Ihc exact sohltiOll 
of  the problem: however, it has the ml',anh~ge Ih'al approximation schemes 
can be derived systematically by iteratit,~ ~1" Ihc equation for .'tl. ~.e~' 

"lhe elimination o f  three- and four-i~oint ct~mulants is carried out using 
the derivative relations (23), 125), and l),.",on's cqtmlion, with Ihe result (see 
Appendix A) 

M(12) -4f lB(1234)[3g(3)g(4)  : 3q134)1 

4B(1234){g(2) q(33)[aM(J2), ,S/t(4)l  

which in the disordered pha',e reduce,, t~ 

q(23)[,3M(32)/&4(34)l',. 

(65) 

We must now cxpreb.,, the derivalivc~ ~ilh respect to / z and 1 in term,; 
of  derivatives with respect to the natural xariables .~,, and q. l-he method i~ 
closely similar to the renormalization pr~cedure for the source functitm and 
the mas.,, operator  in Ref. 11. 

M depends on/L and A 
by generating the skeleton 
observing that they contain 

Thus. we may write 

,3g(3) 
: [ 8g( ) , , - -  

,3M(12) ] q(33) --=B[ ag(3) ,, 

gM(12)  I ;;,q(34) 

;~,,vl 12)], agI54) 

where Eq. (A.2) o f  Appendix A was u,~ed. 

only through ,: and q. That this is ~,o can bc ~een 
diagrams f,,r :~l bv iteration of  [-q. (65) and 
only the bare intcraclmn B, t: lines, and q lines. 

q(3,4) 

�9 $I(12) �9 12flB(1234) q(34) '.- 4 B ( I ~ 4 )  q(~3)[b 'vI(32),~,..I(34)] (66) 
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I )e i ining 

. I -~(1234)  6(1 --- 3 )h i2  

we ob ta in  

&'t/(  12);;b/t~ 3) 

Similar ly ,  f rom 

4) I&.'~l( 121.6q()21)1,, q(33) q(214) (67i 

/L II 121211&11( i 2)..',~g(3)1,, q(33) 

aM(12)  , [ ; 'M(12i  ,;y(3 ) i ,~.1/t 12~ ,,.~,,(34) 
'~.-4(--3-4)- ,.-b~;(-~) ] , , . l i34) I ,W(341 I - ., ,a h,4134) 

\~e ob ta in  (sce A p p e n d i x  BI 

,'~.,'~ 1(12) 
,3A~34) 

l(~8) 

h.U(12) 
f l / l l l2T2i  L ?{e-~".]) . [.g(3;q1341 ,~,,(4)qi33)1 

,~M(f2) f i . ' l(I) i-2)j .~,fi~) } Iq(33)ql 1.1). q(34),t143)] 
�9 U 

[ 8,.tl( i2j. ,', .~1156)] 
/3A(12-[~) l -~ , ( - ) ) .  I. '/()'5) "/11%56) I - ,?,,.."17) I., q(741q{63' 

(69) 

Inserling I:qs. I,581 and (69) in l:iq. (h5), Ihc anmnlnCed intcgrodillerenli;ll 
equa t ion  for  ,.U is obtained.;  hm~cvcr ,  in o rder  t,~ h;Ivc lhc equ , t t ion ,  in a fo rm 
m o r e  sui table  for  gene ra t ing  applOXJlnal ion , , hcme~ .  ~c  make  ,i li:w addi-  
t ional  fo rma l  m a n i p u l a l i o n s .  

Recogniz i l lg  tha t  the der ival ixr  ,,1 ,.11 ~x~lh rc~pcc~ h~ q g~ve,, Ihc irre- 
ducible  re f lex  par t  c~ 

.~11234) 1o 1I(12) ,',q! ~4)].. ~"fl) 

we p roceed  to show that  the four -po in t  verfc,. I'ul~Clion 

1'(12341 el~ 12121[i~..11( I.: t ,~q(34)]., 

satislies the ge the- -Salpc tcr  cqu;.llion. Ill fact. Ihc definit ion 

.J-~(1234) , :  NI  - 3),3(2 4~ ,_=~1234)ql33)q~44i 

can  be used to ob ta in  the fo rmal  cxpan~l ,m 

A(1234) := 8(I 7~),~12 �9 41 -~{12.]4) q(]3)q(44) 

�9 ,- E(12.]4) q(35) q(46) ~ ( 5 6 5 6 ) q ( 5 3 )  q(64) f . . . .  

Thus ,  for  I '  we have  

I ' (1234)  = E(1234)  -~ E ( 1 2 ] 2 ) q l i 5 ) q ( 2 ( , q i ~ ! 5  31 ,'~(, -- ~,~ 

4,- ~ (5678)  q(7_~) q(Sil) : . -1 Z(2{a,34) 
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and resummmg the surics, we l ind thai  I + >,;ttislk',, 

F(1234) - ~(1234) ~-(12J2)q(iS)qt26) /'(5634) (71) 

which is the Bcthe-Salpeter equalion. 
Similarly, ,,vc may define the thrcc-poinl irreducible vertex part 

X(123) [,,.l/i 1218.0~ ~)]~ (72) 

and show that the three-point vertex I'tu~clio~ 

P(123) ,l(12iSl[,3:llll~_).ag(3)],, (73) 

is related to I" by the equation (see Appcmlix (') 

P(123) - X(123) i- F(121)_) q115) qi:~6) X(563) (741 

Rewriting Eqs. (68) and (69) in lerm,, of I[IC vertex filnt.:lions and inserting 
the result in Eqs. (A.4) and (A.5) of Appendix A, v,e obtain 

K(1) -4B(1234j[g(2)g(3)g(4) ; 3g(2),1(34 ) i q(22) q(33)P(2~6)q(64")] 

(75) 
M( 125 : .... 4f lB(12345[3g(3) : , ( 4 ) . :  3q(34)1 

--. 4f~B(12.34) g(~) q(3_~) P(326) q(6,4) 

-- 4fiB(1~34) q(~_~) 1'(.~26)[g(3~ qI04) t .~:(4) q(63)1 

-- 4,8B(I.~34) q(23) F'{3267)[q(63 ~ ,/(74) ,t(64) q(735] 

4[4B(1~34) q(~__~) P(.~26) q(67) P(789) q494) q(93) (76) 

Equations (42), (52), (75) (76), (715, and 174) logedlcr x~llh the definitionq 
(70) and (72) of Z and X provide the de,ircd of equations. 

In the disordered phase, j;, K, V, aml P vanish identically and the set of 
equations reduces to Dyson's cqualion, x~ith M given by 

M(12) . . . . .  12/'J B(1234) q~345 

4f313(12341q(23) 1'(3267)[./(63),1174) , q(64)q(73)] (77) 

and the Bethe--Salpeter equation for 1', Eq. (71), with ,.= dclincd by 

3,(1234) - : /53/t 121..q(34 ~ (781 

9. A P P R O X I M A T I O N  SCHEMES 

If we assume that B is a small qu;tmiL,,.. ,l ~ I L' may think of treating the 
nonlinear interaction by means of ordinary perturbation theory. 

Szz/7/I-4 
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In the disordered phase this amoui l l s  to compul ing  the noninteract in~ 

corre la t ion  function q. in the soluble model H 0, therc:iftcr gcilcrzlling 
expans ions  for M in terms of  B and q.. by i teration of  I!q. (c,6). ''-'') 

I lowever ,  this method c a n n . l  bc c \ l cnded  Io the region I~c'h~v, Ihe 
Iransi t ion since, as has been alrc:idv t'~oillhgd t)tll, Ior [J t) there is Ih~ 
stable o rder  pa ramete r  and the noninleracl ing corre la l ion  I'LlllCIion is 
i l l-delincd. 

I- 'urtherrnore, lilt: absence of  a ~c,ik coupl ing limit, ~hich ~e  have 
discus~,cd in Section 7 ,lnd whkh  ~zl~ pointed out :is x~cll hv t.crrcll, '~' 
clearly ~,hows Ihal even in tile di,;ortlcrcd pha,,e ordinar.~ i~crlurb,tlion theory 
ix insutlicient to describe Ihe bch:r,l~,r ~,1 the ',~.~,lcm :it the t ran ' , l iam. It i., 
lhcrcforc  necessary i o  con' , ider  scil-t.t,!xl-,Ic'nL : lpproximtt lmn o1 iillilfilc 
o rde r  in B. The ff~rlnal lr of  Ihc pro,. i~,l,,, ,,cction provide the mechanism 
for gcncral ing ~,uch approxJnl:~lion,, ~n a ,,.x,,Iclnatic way. 

"lhc most siml~lc approx ima l ion  -,, hcnlc,  :ire obla incd Hlk i l l g  IX" Llllt] :'t[ 
h) >Ol~C order  in g and q and sol,,.ing ',ell-o.w,i~,tentlv Ihe ct~uple o l 'cquat in l l s  
(42) and (52). t lowever ,  care inu',l bc cxerti,,cd ill matching the approx ima t ion  
for M v, ith the app rox ima i ion  for K. ll~ Ihr~ ollc i~ guided bv rclal ions sati,,lied 
by the exact  M and K. For  example,  dil lelcnl i,.lling Eq. (421 v, ilh re',pcct t o / t ,  
we obtain the equat ion 

fl aq0 t(12) 3e(2),',':,/,i 2) nil 21 [,~K( I ) 0/t(?)] 179) 

Next, if K i,; regarded a,, a functional  o l g  only, we ,n,ly wrile 

bKtl)/;~ld2) [~SK(I) ,~g(i) l ,Sty( 5 _ 61,12) 18(0 

and inserting this in Eq. (79), it follmvs thai 

.lq, ~112) :, = �9 , i ~ 2) , ~ [ o h ( 1 ) ' h . c , ( 2 ) ] ' ,  .~ ,~,, . . ' l_ i ,~, i t (2) ~')(1 (Sl)  

Recal l ing lhe derivat ive relal ion (23) and compar ing  xxilh t:q. 152), x~e ,co 
therefore that  in the exact theory 11 :lnd K a r c  related hv 

M(12) fl ,~All),~!f2) /~?i 

In the theory  of  interactli , . ,  bo,,om, ; i p l ;~x ima l iow,  thal prc',crve the 
above  relat ion between M and A d.~ ~,:tti,,I~ tl,c I lugcnhol tz-Pinc , ,  lheorcnl  
and are therefore referred It) a~, "Faplc ' , ' ,"  apl~r.~\inmtion',. ~:"''~ 

t lowcvcr ,  if the approximatiot~ ~,, ~,uch Ih , l  t:q. IH21 I', not ~,att~,licd, thc~ 
Eqs. (81) and (52) it follow~, that q(12) :, ~6ell)/r~lZ(2). l"hat is, within 

': l'his tilltl]ogy should not b~ Itikcu I~,u )lLcraliy. Irl fact, for the boson ~y~tclll ih,: 
}-[ugeilholtz-|)incs theorem is a ~-till~,L'qti "IIL+L ' ')l" th gauL~c in~ariancc of the tttL't, l? 
which does not hold iil the present c:~,. 
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the considered approxim~ttion the corruiati~m I'~znction cannol bc related t~, 
the response of  the order  parantcler  h, an external disturbance. "Io ptll it 
diltcrently, only in the case of  "gaplcss" al)pr,~xinlafions m~ty we tlcrlvc 
unambiguously  lhe static susceptibility Irom q(/, 0). We represent |s I. 175) 
pict,~rially as follows: 

Y 9 K = + +- 

~ Iwrc the completely symmetr ic  inleracti~m is deriv.)ted by a dol. the curly line 
represents the order  pz~ramctcr g, the full line rcprc,,cnts the tv, o-poJnt 
cumulant  q, and the triangle represents Ihe three-point vertex fu~lction ]'. 
Wc see that the sirnplest approxim~tli,m to h ix gl,,en by the term 

11cncc, the corresponding "'gaples>d' ;llq~r~>x~n~,~l~"n l', generated by taking 
for .~'/ the d iagram obtained by dill'crcnfi,~iing ~x3) with respect to g: 

V 
Diagrams of  Ihis type l't~r itl and A ,s,,rrc.,pond Io the I}ogulittbov 

appro•  lbr liquid helium. L~"~ In,erring t'\:~rcssion,, ($3) and (84) in 
[!qs. (42) ;.lrl,I (52) and specializing t~ the tr:ln-,lational invariant case or  ~t 
untlbrna external field, the following equations ~Jrc obtained after making 
the ansat: (19) for ,4 and 8: 

2[A i 2Bg"]g - t ' .  2fl[A--AoV'- '  : 61/k,:Jq(I - - 2 ) .  ,~tl -- 2~ (~5} 

' lhc  first or  the above equat ions is the cquatit,q f~)r the (~rdcr parameter  
obtained in the I .andau theory, ~Tj while th.._" second one i-, the equat ion for 
thc correlation ftmctioJ! oblzlincd hy Kadauolt" ,,t (i/.'"' 

"l'laerefore, it appears  111;.11 the cla,,si,::~l tho , rv  correspond-~ to the lir,,t 
and most .,,maple approximat i t ,n  in Iht" ilicr,tch\ !,cncratcd by taking into 
account successive diagram',  fi'~r K. 

We just ment ion here, and shall rec~ul~dcr the subject more extcn~i~ciy 
in the ncxt section, that  altcrn;ttivciy It) the 't,.,~pl:,~-,'" scheme there exist,; 
the so-callcd (b-derivable appruximat iml  sthcll~.  In 'h-derivable appr~xi-  
mations liq. ($2), satisfied by M ~tnd h in lhe cx;lct theory, nccd no hmgcr 
bc satislied by the approx imate  M and /\. 

Such a distinction, however,  dock, n~){ ~-xi..t In the disordered phase where 
in zero field K is identically zero. In this ca,~c ,me has only to produce 
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approximate expressions for M as a functional of q and solve sellZconsistenlly 
Eq. (31). Considering Eq. (66), lhe Io~vcst-order conlribt,tion to M i,~ given 
by the Hartree term 

Iterating, one linds to ~,ccond order 

6 (413)ZE! (1345)q (33) B (32 a g) q (b, 4) q (.5 5) 

and to third order 

In.~crting expression (86) for M in I(q. (~l) and making again the a n s a t z  

(19). for the translational invarian! system ~vc lind the follo~ing equation for 
the correlation function: 

2[3[,4 - A.V 2 ~- 6Bq(I ~)l m l 2) q()_ 2) ,~(I 2) 

In a forthcoming paper x~c shall con,,idcr the selfcollsistcnt solution of 
the above equation, which exhibils a "'noucla~ical'" asymptotic behavior I\~r 
Ihc susceptibility, and the problem of exlcmting the approximation belmv 
the transition. 

As was already menlioned, the I:l~l, ,>I ~c;lk coupling lilmt cnmpcl. 
one to consider self-consistent approxlmalion-, ,~I Jnlinilc order in B. I,, go 
beyond the simple schemes of Ihc lype mentioned ,d~,vc, one mu~t make 
full use of the closed set of equations ol~lained in lhc previou~ secti,,L 

The general scheme can be summari/cd ~o: From an initial approximate 
expression for M as a functional of lhe unknown .~ and q the irrcducilqc 
vertex parts 2 and X are computed by Iunctiona] dil]crcntiah,m. ,.~ i', t~,~_'~l 
in Eq. (71) to solve for/- ' ,  and P is catcuhdcd h,rm I.q. (74). In l urn / ' a n d  /' 
arc inserted in the equations for K and ..W, (75) ,rod (76), respectively, which 
must be solved self-consistently together ~vilh the equation, l'~r .~,, and q. 

In its simplest version this program gi~c~, lhc '~hicIded potential approxi- 
mation for the correlation function. Limilmg ourselves to Ihc disordered 
phase and taking as the initial approximation for M the I-lartrcc term 

�9 



Field Theory Description of Continuous Phase Transitions 53 

f rom lq .  (78), ..~ reduces to the bare interaction ,.. Inserting lhi,, rcsull in 
l-q. (71 J, 1' is obtained as thc sum uf all hubblc dizigrams 

r = .  + C >  § 

btih,,liluting in turn into Eq. t77).,tml 01cr:ilulg, ~c lind that ~I is g~vcn by 

the suln of  all d iagrams obtaincd by remm.'intz one q-line l'roln lhe huhhic 
ring diagrams,: 

Going  one step further and deriving fr,,m lhc ,tho,,c expression for M 
the irreduciblc vertex part  ,E ,we obtain an CtlUatinil fnr l '  f~wmally similar 
Io thc one considered by Riedel. 123> 

10. FREE ENERGY 

As ~e have seen previouqy,  quanlitles like the susccFtibilily and the 
correlat ion length can be readily obtained once !he order parameter  corre- 
lation function is known. 

I h)wever, another  quant i ty  of  inlerest is ihe specilic heal and thi~ cannel  
he oblained just f rom the kno~,ledge of the c<wrelation function. In order to 
ublllin the general the rmodynamic  propert i,,:,, of  ill0 ,.y~,lenl a.~soci~lted w lib ~1 
given npproximat ion  to the correlation I ' t l l l t2 | i()n o n e  needs an e,q)ression lnr 
the free energy :is a functional oft,, ,ind q 

( J n c  C;.ln show that a Luttingcr Ward ~i~ type c,f frec energy cxprc,,~i,~ 
can hc obta~f~cd, :lamely 

[7I, V /3/zl l )g(l)  -/3,.1(12)1r q(12)J : ' l o g q l l ,  1 ) :  ~fl'bl.e.q: 
(87) 

where the notation log q(I ,  I) represent,, Ihe I raeo of  the nlalrlx I<~g q([, 2). 
If tile system is tr,tnslationally lnvarianl,  then Ihe matrix i,, diagonal in ihe 
monlenluna representation and log q( l, I) can be computed  summing  over  
lhe Fourier components  Y'.j, log q(p). 

The functional ~{g, q} has the folh,wing properties: 

[6<b/Sg(I)],, ~-= 2K(I),  16~Ii$q(I, 2)},, /4 'M(1.2) IX8) 

In order  to show that Eq. (87) indeed gives an expression for the free energy, 
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one computes  the derivalives of  the r.h.s, with rcspcct to tile parameters  

A, B, fl, obtaining (Appendix D) 

8( - [ -JW) /SA(12)  --{3[g(I).~(2) -.. ,1(12)] (89) 

I.(.-,SW)I~B /7[.e'(il .r ( t ~ ( i ) q ( l l ) - : -  3q " ( l l )  

-:. 4,~.,( Ii q(l I I ) - i  q ( l l l  I)] fg0) 

i.(-/r :: [t,(1) .4~12).~t2) . i -~K( I ) ] .~(1)  

[ l i  g '.1/(12) - .  ACi2)i qli2) (<Jl) 

In Eq. 190)al l  arguments of  the ctiiqltii~lll{S arc taken al lhe same p~i i l i  :lil, l 
;in integration over  the volume of the ~.ysle111 is understood.  Tile derivative 
with respect to B, for  simplicity, has been computed  in lhe case of  a poinl 
interaction, corresponding to the ansatz (19). 

In the exact c4se these dcrivalives a,c equal to lhe corresponding 
derivatives of  log Z (Appendix 1)), where Z i~ I.he parti t ion function given 

in Eq. (35). 
Fur thermore ,  dilTerentiating ( -- [4 ll~ ~s iih rc.spect to g and q, keeping the 

parameters  constant,  it follows that 

[g)(- ~W) l~g ( I ) ]  a .... fl/ , t l)  : i 3 1 , ( I ) -  q.~(12)<~,,(2) 

[8( . - tSW)/aqf I2)]  ~ --= ~[q.'(12)- J4(12) - . q  '(12)1 

Therefore,  compar ing  with Eqs. 142) and (52), ~.e find 

[3(.-tgW)i3g(l)]o :-[<-~( 3n%aq(12)],. 0 192) 

] 'ha t  is, the expression for  the free energy given in Eq. (87) has the propt ' r ly 
that it is s ta t ionary for ch~inges ol'L' ,ind 'l abcmt Iheir physical values, when 
the parameters  are kept tixed. 

Note  that the variational property,  iis well as lhc functional form of  
the derivatives given in F. ix. (,';')) t'.~1) depth , l ,  only oil lhe follo~ving con- 
ditions: (a) M and K are obiained from a luncl~onal qJ according to t'!q. (<'.414); 
(b),~ and q are solved seli-con',i.stenlls. N a m d y .  they satisl')' l..qs. (42) arid (52). 

Thereli)re, for any qJ-derivable appr,, ,cimalion '~""-"u nan:ely uny 
approximat ion  thai satisfies condili~,ns (~l) ;in<~ Iio above,  tile I'rce cnery.y i., 
s ta t ionary for  varialion<; o f ,  and < / ,i.h,~ul Ih,~il physical value,,. In addHi~,n, 
its derivatives with respecl Io Ihe p~r:imelers have the same functional f<,rNi 
as the derivatives of  the exact Free cucrgy. 

The ~-der ivabi l i ty  of  the apl~r,,ximuli,,n guarantees the unambiguou .  
determinat ion ~f the frec energy, iur lherl l lorc,  the v~riatk)n,d proper ty  can 
serve as an i m p o r t a , I  tool for t,biaini,~', n, ,~perturhalivc approximat~.,ns 
for g and q. 
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In geucral a ~l~-dcrivablc appn~xinmlion i.q nm al tile same llllle a 
"gapless'" approximation.  

"I'o illustralc this poillt, we COll,.,Irticl I]lC diagran3s for if and K by 
itcralion of  kq. 165) and Eq. (A.4) of  Appendix A: 

K = + + + - . .  

Ihcn. wilh the help of  Eq. (88), wc can mfcr Ihe l'~,=m o f lhc  diagram~ cnlcring 
the expansion of~h: 

= + + ( + , 4 > , . . .  

If we lake, for example, the following approxim,tllon for (I,: 

then, according h) i 'q. (88), it follow~ Ihal 

tt.~..p..rl / .-. / i 

K = k ~" 

In the disordered phase these diagrams reduce i., 

M ~ - )  K 0 

~ hich is itlsl Ihe I larlrcc ,qp[,r~)\~u/all,Ul ~:: ";lti, ul.,'(I II 5;Cclion '). 
[11 []lC ordered phase Ihc c\pl'c,.,siol!., iu 1! [t~l 1I ;illd /x }_'CIICI:IIJ ;I emil:It 

of  e(.llltlliOllS I'~w .t,, and q o f  lhe type em_~mill,, red i~l the (~ir:mic,lu .,\rib,\'. III 
approxinmliol~ t\~r hquid helium. ~a'' e,, %,~ ,,; ; , n  .,ppl~,xiIl~ali~,l~. lh~my.h. ~,, n,,, 
"'gaplcss." In l'acI, when A i, regarded as a l'um.'lhm:d ,d.t,, only. ~c have 

+ + ~ {95) ,rg 
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where 

O 
denotes the sum of the terms obtained taking the deriwttive with respect to g 
inside q in the Hartree term. Comparing with the first Eq. (94), we see thal 
Eq. (82) is not satisfied. 

A P P E N D I X  A.  D E R I V A T I O N  O F  E Q .  (65) 

From the identity 

6q(12)/6t~(3) . . . .  q( l~)[6q a(23)/6#(3)] q(]2) (A.l) 

and Eq. (52), we obtain 

~q(12) 5M(~3) 
- ~t-t-(3) . . . .  q(l~) --.~t ~i~-) ---- q(32) ( A  2) 

8q(12) ,~M(~3) 
(-'q-') gh~34-) q(13) q(42) -i. q(14)ql32) -- fl-~q(l][)-3~l-(-34)- q(32) 

(A 3) 

where to derive Eq. (A.3) wc have used file symmetry of A: 2,t(12)--- 
A(12) ! A(21). 

Employing the derivalive relati(m 123), the l.h.s, of Eq. (A.2) c,m he 
expressed in terms of the three point cum(d,q,t and inserting in Eq. (41~ 
we obtain " 

K(I) . . . .  4//(1234) [g(2) g(3) g(4) ! .  ~g(2! q(3,t) -- fl- q(22) t ' [{- - tJ  

(A .4) 

Next we observe that Eq. (Sl), from the symmetry of the parameter B. 
can be rewritten as 

M(I~) q(22) --~ -4flB(l~34)[39(3) .g(4) q(22) -l. q(34) q(22) -~ x{2) q(342) 

-t- q(2234) ! q1223) g(4) ~- q~24) g(3) Jr- q().3) q(24) 

-k- q(~4) q(23)] 

Hence, comparing with Eq. (IX), 

M(I~) q{?.2) :~ --4/3B(l~34){3g(3) g(4) q(~2) -i- q(34) q(~2) -i- g(~) q(342) 

-!.. (--/3-t)[3q(~2)/'c3A(34)]} 



Field Theory Description o! Contin.ous Phase Transitions $7 

inserting Eq.s. (A.21 and I.\.3) i~, Ilk' r.h.:-,, and intdtiplying by q ~, we tinally 
obtain Eq. (65): 

M(12)  4/4B(1234)[3g~3)g~4) ', Lq[34)l 
4B(1234) {,~'t 2) ql 33)[6M(32 ).;'~t, 14)] q123)[GM(32/GA(34)]) 

(A.51 

we obtain  

[ ,SM(12) ] 
8M(12)3A(34) .-- /4 [--~gi~-)--Jo [g{3)qt34) i g(4) q(J3)] 

8X(3) q �9 at~ii: i)- -. q(63) 
g,~l(12) 

.... # [ 6q(34) ] [q(33)q(~4).~. q(34)q(g3)] 
g 

! [ ,SMII2) 8M(56) 
6,t(32~) ] q{35)q(46) 8A(34) 

1/ 

This can be rewriuen as 

8M(12) _ [ i',?,1(12) !),11(56) 
6A-(34)- [--,~,r)13,~)-] ~ q(35)q(~46) ,~A73-4)- 

. . . .  3 [ aM(12) 6g(J) ] {g(3) q(~4) i g(4) q(33)] 

i 1 -/3 (--gq~3~4.i-- o [q(33) q(714) t. q(34) q(~,3)] 

[ ,5M(~2) aM(56) 
. . . . .  L---Sg(~-)- ]~ q(~5) .-~-~(~-- q(63) 

A P P E N D I X  B. D E R I V A T I O N  O F  EQ.  (69) 

F r o m  the second dcri~aU,,,e re la t ion  I 17) and l_iq. (A.2) ,  we have 

8g(3)/SA(34) ... --/3[g(33.1) ~,13).~/34il 
= ~[,/(33.1J ,o3) qt33) r g(4) q133)J 

�9 --3[g(3) q(34) 4 g(4) ,/~]3)] -- q(J5)][,SM(56)/,Sr44) ] q(63) 

while from Eq. (A.3) 

8q(374) , - 8M(56) 
-8--A(-3-4-) " -fl[q(33) q(744) ! q(J4)q(43)] ~ q(J5) -3A-(3-4)- q(674) 

Hence, substituting in 

8A(34)- t 6g(3) J~-b-A64i : t 
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]'hat is, using Eqs. (67) and (68) , 

,f/1I(3~.) 
A '(1234) 314i3~i- ) 
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/9 [ ~'i/tl(12) ] [g (3 )q (~4) . !  g(4)ql3311 
J,, 

,SM', 121 / ] [ql33) q(:44) ~ q(~4) q(3,3)] 

'-~S~-;(~)~M(12!],, ,i.'v1(56) 1 q(74)q(63) 

and multiplying to the left by ,I, l.q. (69) folh~w.,,. 

A P P E N D I X  C. D E R I V A T I O N  OF EQ.  (14) 

From the definition (72)and  (7 . t )of  )( and P and the expansion for ,l 
we have 

~ - : ~  

/'(123) ,.l(I.~1..) ),'~ ]~ 3) 

X(I.~. ~ ._=(12121q(iS)q(~6){b(5 -- 3) ~(6 - 4) 

-,- Z(5678),/(73) q(,'.;4) -.-} .V(3743) 

.u ~ {Sil21-2~ . _~(12.~6) q(~;5) q(--6),.FI56]]) 

. . . . .  : ,/( 13~ q(24j  .~!~43) 

and observing that the quant i ty  m the brace adds up to I ' ,  wc obta in Eq. (74) 

A P P E N D I X  D. L U T T I N G E R - W A R D  FREE E N E R G Y  

An arbitrary diagr,tm for q~ conl,uns intcrzlction vertices B, .~z lines, and 
q lines. Therefore q) depends on A only throu,L_,i~ .t,, and q. 

Differentiating Eq. (87) with respcct to .14112), wc obt;.tin 

3(- /911, ' )  ,5.t:t I ~ 
. . . .  12) g(2) ;SA(-I-2) ~A(12) /3p.(T) -~-Jll-2) ~g(I).,:12) 231f  - " 6g( l )  .. 3q(12) 

~ q ( ] 2 1 ,  I ,( ,~q(]~.). I ,';,.r 3.t~(l) 
- /9A(][2) 8-.~il2i " 2 q i95)6A(-12-)- ; }f3 [ ,~.,:tl1 J,,gA(12) 

6 0  ,Sq([2) 

Using Eq. (88), the above expression becomes 

~5( - # W )  " ,~,e I i ~ 
3A(12) -- f~[ 2A(]-])g(2) I ~(-i) ~. k ( l ) ]  ~S151(12) 

hqlf2) 
I [2/9A(i2) .... m(12) ..... q-~(12)] 3-)1(i2) " 

-.- fl[g(l) g(2) .-t- q(12i] 
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Comparing with I-qs. (42) and (52), the quanlilJcs in the brackets vanish 
and we finally have 

6(--~W),8/|(12) . . . . . .  fl[.c;(I)g(2) .. q(12)] (D.I) 

On the other hand, considering the partition function Z given in Eq. (35), we 
have 

8(logZ)',3A(12) [8( [3L)-',SA(12)] ,6(-~G)/SA(12)) 

Using Eqs. (34) and (39), we may compute the above derivative explicitly: 

3(log Z)/SA(12) --: �9 B[g(1) g(2) .-: (12)] 

. - / : / {2A( ]2 )  g(2) if(i-) 4. 4B( i234) [g(2)  g(3) g(4) 

.- 3g(~) q(34) - q(234)]}[Sg(T)/SA(12)]. (D.2)  

Compar ing  wi th  Eqs. (41) and (42), we obtain the same rcsult  as in Eq. (D . I ) :  

g(IogZ).,iS,,l(12) ,q[g(1)gI2) l q(12)] 

Similarly, differentiating F.q. (g7) with respect to B, we obtain 

c(--~dlt/) r e ( I )  2f l / l (12)g(2)  ~,g(l) f iA(12) 8q(12) 
, , ~  �9 - 3 t , t  l t - ; . t i  . . . . . .  q l , - B -  . . . . . .  a B  

I ~,q(12) t f!q5 
2 q '(12) #/3- 2 tq-,TBS (D.3) 

In order to compute the derivative of r with rcspect to B, we employ 
a transformation of thc type used by Baym in Ref. 10. A given nth-order 
diagram for r contains n interaction vertices and 2n lines, counting twog lines 
as one. Thus, we may eliminate the explicit B dependence by means of the 
transformation 

,k' - ~ t~ ~ B1"4,s  ' ,  q �9 * ~ = B~!2q (D.4) 

Namely,  q) depends on B only througk ~ and ~]. Vary ing B, now we shall have 

c,t, [ ,~,t, ] , ,~l)  [_.~r ;,0~12) (D.5~ 
-iB ': L-S#(i-)-J~-~:#-- +- t Sq(J2) J~ - - e / 3 -  

Next we note that from Eq. (88) we havc 

r ~ a e  i -_ ,~  _1 

(D.6) 

[-3-~-(~-)-], - B- ' / :  ,i. 8q(12) .] ,  :=--,8-'B ' ,gM(12) 
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while from Eq. (I).4) it follows that 

a~(1) 1 BZ:4 ag(1) 
--~-ff-- ---- 4 B-a/+g(l) -+- ~)B 

(D.7) 
i Fl( ! 2 ) I B ~,z iJq(12) 
--~,:B 2 B-','Zq(12) i - /'~B 

Thus, inserting Eqs. (I).6) and (D.7) into Eq. (D.5), we obtain 

;,~_~.. l.;+ ';,'~igil)i 2;,<i)-aY-tL! ~'B 2 aB 
�9 1 Cq(I 2) 

219 'B-~M(12)q(12) �9 f lh '~ / (12)- - i ,  i f -  (I).8) 

Inserting, in turn, this result in the r.h.s, of  Eq. (D.3) anti using again Eq~. (42) 
and (52), we obtain 

aC-.-~w) 
O B  

i.e., 

~g( I ) 
- - ~ [ / , ( I )  2Ai12)g(2) K(I)] -~":B " 

~.'q(12) 
I[2BA(12) -. q ~ ( 1 2 ) -  M(12)] - - i )~- -  

�9 : ]~B ' K ( I ) g ( I ) . "  ~B tm(12)q(12)  

~ , ( . - . [ J W ) / i B  I ~ B - ' [ K ( I ) g ( I )  ! /3 JM(12) q(12)] (1).9) 

From Eqs. (41) and (51), for a point interaction, we have 

K( l )g(1)  . . . .  4B[g4(I) : 3 g " ( I ) q ( l l ) :  s  

M(12) q(12) . --4flB[3g'~(I)q(ll,  . 3qZ(ll) . 3 g ( I ) q ( l l l )  !. q ( l l l l ) ]  

where the above notat ion means tha t all the arguments of  the cumulants are 
taken at the same point and an integration over the volume of  the system 
is understood. 

Therefore,  Eq. (D.9) can bc rewritten as 

~:(-.flW)/~B - - f l [g4( l )+6g2( i )q ( l l )  i 3q2( l l ) - ; . -4g( l )q( l l l )  ; q ( l l l l ) ]  

(I). I0) 

The corresponding derivative of  log Z is givcn by 

k'(Iog Z)  
~;B 

i.!(--fll.) ( i t  ,~(i) ) 
" ~ : B -  : ~!kl 
. . . . .  /3{2A(12) g ( 2 ) - - t , ( l )  4Blg:~(I) ~ 3 g ( l ) q ( l l ) . - .  q( l l l ) ]}  ;:g(I) 

' bB 
-- fl[g4(l) i- 6gZ(l )q( l l )  ! 3q"(l l)  i 4 g ( 1 ) q ( l i l )  ! ~ q ( l l l l ) ]  

where the last of  Eqs. (39) was used. 
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Comparing with Eqs. (41) and (42), the coelticient of/'g'(l)/aB vanishes and 
we obtain 

/+:(IogZ)/ i 'B-  _/~[,g4(l) } 6 g Z ( 1 ) q ( l l }  -I- 3qe ( l l )  ~ 4 g ( I ) q ( l l l )  : q ( l l l l ) ]  

(D. l l )  
which is the same as Eq. (D.10). 

Finally, for the variation of the frec energy with respect to fl, we make 
~;ery similar considerations. We note that tile quantity/dO is dimensionless. 
Thus, the nth-order diagrams for rio must contain a factor fi". lrl other 
words, flcl) depends on the temperature explicitly through this factor fl" 
and implicitly through the fi dependence o f~  and q. 

By means of the transformation 

t, '  " ~" ,~ 13~L/4,1., r , q - ij ,q' +q ( D .  1 2) 

we absorb the explicit temperature dependence into the ,tc and q lines. The 
effect on tic/) of a variation off i  wil: then be given by 

z=Cj3q,) l p(~O). 1 +;Z(l) , [ ;(3q,) ] ;.q(J2) .... (D.13) -;,U , s,~,(i)J+-~)~ ,- 0(-12-/J~-c:~ 
On the other hand, Irom Eq. (D.12i we obtain the set of relations 

[ ] ,,, i 1 -ij~il) ~ /3 |8~,(-I-)-J,,: 2/3'~'"K(1) 

-8-(q i2)-J , [- ] /r ."M(i 2) + ~q(i-2)., 

f _ g ! l ) _  I fi .".',~(I~ : fit..,., +,+(9 

/ ?'q.(1_2__) 
:-: " f i t / ' q t (12 )  i fl'"'~ 

Thus, Eq. (D. 13) becomes 

. ~g(.!J.. ; M(12) 4q(12) 3(~r I K(I) I , ( I )  : 2  21BtM(12)q(12) t2 f lK( l )  --~FI ~?, . f : l -  

Taking the derivative with respect to fi of Eq. (87), we then obtain 

Z;( -- fl W ) 2) . . . . .  ,;'Z(1) 
c,'fl -- [ f i t+(l)--  234(1  ~(2) i 3^{~)I--~B-- 

Pq(12) [ f lA(12)- .  ~q-~(12). .~M(12)l--yfi-- 
[ 

: [p.(l)--. A(;2)g(2) -: . ]K(1)]g(l)  

[ } & ' M 0 2 )  - A ( t 2 ) ] q / ~ 2 )  
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i.e., using Eqs. (42) and (52), 

L~(--~W)/~"f3 == [b~(]) -- A(12)g(2)--[-]K(l)]g(l)-i-[]r -- A(12)]q(12) 

(D. 14) 

Differentiating log Z with respect Io/3 we obtain 

~(Iog Z) ;~( 

z - . =  - - -  

+ 

"-I- 

3L) , /.v(-.s3G) \ 
' \  -/ 

~{2A(12) g(2)-. ~(I) 

4B(1234)[g(2) g(3) g(4) -t- 3g(2) q(34) ' q(234)]} ~/g(l) 
�9 --%fl--- 

{ A ( 1 2 )  s  .... /~(1) ,, ~4B(1234)[g(2) s g(4) -F 3g(2) q~34) 

q(234)]} g ( l )  -- {A(12) ,1(12) -~- 14B(1234)[3g(l)  g(2) q(34) 

3g(1) q(234) ,-i- q(1234)]} 

In the above expression the coefficient o f  Og(I)li!fl vanishes as can be seen 
f rom Eqs. (41) and (42). The rest of  the expression, on compar ing it with 
Eqs. (41) and (51), is seen to reduce to 

8(log Z) 
83 == [/~(1) -- A(12)g(2)- , -  J;K(I)]g(1) ~ [~flaM(12) --  A(12)]q(12) 

( D I S )  

which is the same as Eq. (D.14). 
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